Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 54517 by hassentimol last updated on 05/Feb/19

Prove that    (((√(h+1))−1)/h) = (1/((√(h+1))+1))    please...

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$ \\ $$$$\frac{\sqrt{{h}+\mathrm{1}}−\mathrm{1}}{{h}}\:=\:\frac{\mathrm{1}}{\sqrt{{h}+\mathrm{1}}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{please}... \\ $$

Answered by Kunal12588 last updated on 05/Feb/19

let (√(h+1))=k  h+1=k^2   h=k^2 −1  (((√(h+1))−1)/h)=((k−1)/(k^2 −1))=(((k−1))/((k−1)(k+1)))=(1/(k+1))=(1/((√(h+1))+1))

$${let}\:\sqrt{{h}+\mathrm{1}}={k} \\ $$$${h}+\mathrm{1}={k}^{\mathrm{2}} \\ $$$${h}={k}^{\mathrm{2}} −\mathrm{1} \\ $$$$\frac{\sqrt{{h}+\mathrm{1}}−\mathrm{1}}{{h}}=\frac{{k}−\mathrm{1}}{{k}^{\mathrm{2}} −\mathrm{1}}=\frac{\left({k}−\mathrm{1}\right)}{\left({k}−\mathrm{1}\right)\left({k}+\mathrm{1}\right)}=\frac{\mathrm{1}}{{k}+\mathrm{1}}=\frac{\mathrm{1}}{\sqrt{{h}+\mathrm{1}}+\mathrm{1}} \\ $$

Commented by hassentimol last updated on 05/Feb/19

Thank you Sir  God bless you

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Answered by math1967 last updated on 05/Feb/19

((((√(h+1))−1)((√(h+1))+1))/(h((√(h+1))+1)))=((h+1−1)/(h((√(h+1))+1)))  =(1/((√(h+1))+1))

$$\frac{\left(\sqrt{{h}+\mathrm{1}}−\mathrm{1}\right)\left(\sqrt{{h}+\mathrm{1}}+\mathrm{1}\right)}{{h}\left(\sqrt{{h}+\mathrm{1}}+\mathrm{1}\right)}=\frac{{h}+\mathrm{1}−\mathrm{1}}{{h}\left(\sqrt{{h}+\mathrm{1}}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\sqrt{{h}+\mathrm{1}}+\mathrm{1}} \\ $$

Commented by hassentimol last updated on 05/Feb/19

Thank you Sir

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com