Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 8105 by 314159 last updated on 30/Sep/16

Prove that ,for any acute angle α   secα cosecα +tanα +cotα ≥4.

$${Prove}\:{that}\:,{for}\:{any}\:{acute}\:{angle}\:\alpha\: \\ $$$${sec}\alpha\:{cosec}\alpha\:+{tan}\alpha\:+{cot}\alpha\:\geqslant\mathrm{4}. \\ $$

Commented by Yozzia last updated on 30/Sep/16

f(x)=(1/(cosxsinx))+((sinx)/(cosx))+((cosx)/(sinx))  f(x)=(1/(cosxsinx))+(1/(sinxcosx))  f(x)=(2/(cossinx))=(4/(sin2x))=4cosec2x  Since 0<α<90°⇒0<2α<180°  ⇒0<sin2x≤1⇒cosec2x≥1  ⇒4cosec2x≥4⇒f(x)≥4  ∴ secxcosecx+tanx+cotx≥4 ∀x∈(0,90°).

$${f}\left({x}\right)=\frac{\mathrm{1}}{{cosxsinx}}+\frac{{sinx}}{{cosx}}+\frac{{cosx}}{{sinx}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{cosxsinx}}+\frac{\mathrm{1}}{{sinxcosx}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{{cossinx}}=\frac{\mathrm{4}}{{sin}\mathrm{2}{x}}=\mathrm{4}{cosec}\mathrm{2}{x} \\ $$$${Since}\:\mathrm{0}<\alpha<\mathrm{90}°\Rightarrow\mathrm{0}<\mathrm{2}\alpha<\mathrm{180}° \\ $$$$\Rightarrow\mathrm{0}<{sin}\mathrm{2}{x}\leqslant\mathrm{1}\Rightarrow{cosec}\mathrm{2}{x}\geqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{4}{cosec}\mathrm{2}{x}\geqslant\mathrm{4}\Rightarrow{f}\left({x}\right)\geqslant\mathrm{4} \\ $$$$\therefore\:{secxcosecx}+{tanx}+{cotx}\geqslant\mathrm{4}\:\forall{x}\in\left(\mathrm{0},\mathrm{90}°\right). \\ $$

Answered by prakash jain last updated on 02/Oct/16

answer in coments

$$\mathrm{answer}\:\mathrm{in}\:\mathrm{coments} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com