Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 179900 by Shrinava last updated on 03/Nov/22

Prove that:  f = 5x^4  + 35x^3  + 28x^2  + 14x + 7  is irreducible in  Q[x]

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{f}\:=\:\mathrm{5x}^{\mathrm{4}} \:+\:\mathrm{35x}^{\mathrm{3}} \:+\:\mathrm{28x}^{\mathrm{2}} \:+\:\mathrm{14x}\:+\:\mathrm{7}\:\:\mathrm{is}\:\mathrm{irreducible}\:\mathrm{in}\:\:\mathrm{Q}\left[\mathrm{x}\right] \\ $$

Answered by floor(10²Eta[1]) last updated on 04/Nov/22

we want a prime p such that  1) p∣35, p∣28, p∣14, p∣7  2) p∤5  3) p^2 ∤7  ∴p=7 works⇒f(x) is irreductible in Q[x]

$$\mathrm{we}\:\mathrm{want}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{p}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{p}\mid\mathrm{35},\:\mathrm{p}\mid\mathrm{28},\:\mathrm{p}\mid\mathrm{14},\:\mathrm{p}\mid\mathrm{7} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{p}\nmid\mathrm{5} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{p}^{\mathrm{2}} \nmid\mathrm{7} \\ $$$$\therefore\mathrm{p}=\mathrm{7}\:\mathrm{works}\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{irreductible}\:\mathrm{in}\:\mathrm{Q}\left[\mathrm{x}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com