Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56075 by Kunal12588 last updated on 10/Mar/19

Prove that If a set consist of n number of  terms then its Power Set would contain  2^n  number of terms.  [Use formulas of sequence and series]

$${Prove}\:{that}\:{If}\:{a}\:{set}\:{consist}\:{of}\:{n}\:{number}\:{of} \\ $$$${terms}\:{then}\:{its}\:{Power}\:{Set}\:{would}\:{contain} \\ $$$$\mathrm{2}^{{n}} \:{number}\:{of}\:{terms}. \\ $$$$\left[{Use}\:{formulas}\:{of}\:{sequence}\:{and}\:{series}\right] \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Mar/19

power set  {∅}→nc_0     {a,b,c...}→nc_1   {ab,bc,cd...}→nc_2   ...  ....  nc_0 +nc_1 +nc_2 +...+nc_n =2^n   [(1+x)^n =1+nc_1 x+nc_2 x^2 +...+nc_n x^n   put x=1→2^n =nc_0 +nc_1 +...+nc_n ]

$${power}\:{set} \\ $$$$\left\{\emptyset\right\}\rightarrow{nc}_{\mathrm{0}} \\ $$$$ \\ $$$$\left\{{a},{b},{c}...\right\}\rightarrow{nc}_{\mathrm{1}} \\ $$$$\left\{{ab},{bc},{cd}...\right\}\rightarrow{nc}_{\mathrm{2}} \\ $$$$... \\ $$$$.... \\ $$$${nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} +{nc}_{\mathrm{2}} +...+{nc}_{{n}} =\mathrm{2}^{{n}} \\ $$$$\left[\left(\mathrm{1}+{x}\right)^{{n}} =\mathrm{1}+{nc}_{\mathrm{1}} {x}+{nc}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{nc}_{{n}} {x}^{{n}} \right. \\ $$$$\left.{put}\:{x}=\mathrm{1}\rightarrow\mathrm{2}^{{n}} ={nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} +...+{nc}_{{n}} \right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com