Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 17472 by Arnab Maiti last updated on 06/Jul/17

Prove that ∫_6 ^(11) (dx/(√((x−2)(x−3))))=2ln((3+2(√2))/(2+(√3)))

$$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{6}} ^{\mathrm{11}} \frac{\mathrm{dx}}{\sqrt{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right)}}=\mathrm{2ln}\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$

Answered by sma3l2996 last updated on 06/Jul/17

I=∫_6 ^(11) (dx/(√(x^2 −5x+6)))=∫_6 ^(11) (dx/(√((x−(5/2))^2 −(1/4))))=2∫_6 ^(11) (dx/(√((2x−5)^2 −1)))  u=2x−5⇒du=2dx  I=∫_7 ^(17) (du/(√(u^2 −1)))  u=cosht⇒du=sinhtdt=(√(u^2 −1))dt⇔dt=(du/(√(u^2 −1)))  I=∫_(cosh^(−1) (7)) ^(cosh^(−1) (17)) dt=cosh^(−1) (17)−cosh^(−1) (7)  =ln(((17+(√(17^2 −1)))/(7+(√(7^2 −1)))))=ln(((17+12(√2))/(7+4(√3))))

$${I}=\int_{\mathrm{6}} ^{\mathrm{11}} \frac{{dx}}{\sqrt{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}}}=\int_{\mathrm{6}} ^{\mathrm{11}} \frac{{dx}}{\sqrt{\left({x}−\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}}=\mathrm{2}\int_{\mathrm{6}} ^{\mathrm{11}} \frac{{dx}}{\sqrt{\left(\mathrm{2}{x}−\mathrm{5}\right)^{\mathrm{2}} −\mathrm{1}}} \\ $$$${u}=\mathrm{2}{x}−\mathrm{5}\Rightarrow{du}=\mathrm{2}{dx} \\ $$$${I}=\int_{\mathrm{7}} ^{\mathrm{17}} \frac{{du}}{\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${u}={cosht}\Rightarrow{du}={sinhtdt}=\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}{dt}\Leftrightarrow{dt}=\frac{{du}}{\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${I}=\int_{{cosh}^{−\mathrm{1}} \left(\mathrm{7}\right)} ^{{cosh}^{−\mathrm{1}} \left(\mathrm{17}\right)} {dt}={cosh}^{−\mathrm{1}} \left(\mathrm{17}\right)−{cosh}^{−\mathrm{1}} \left(\mathrm{7}\right) \\ $$$$={ln}\left(\frac{\mathrm{17}+\sqrt{\mathrm{17}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{7}+\sqrt{\mathrm{7}^{\mathrm{2}} −\mathrm{1}}}\right)={ln}\left(\frac{\mathrm{17}+\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}}\right) \\ $$

Commented by Arnab Maiti last updated on 07/Jul/17

I think to prove the answer we need to put  (x−3)=z^2

$$\mathrm{I}\:\mathrm{think}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{put} \\ $$$$\left(\mathrm{x}−\mathrm{3}\right)=\mathrm{z}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com