Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 35004 by Rasheed.Sindhi last updated on 14/May/18

Prove that 41 divides 2^(20) −1

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{41}\:\mathrm{divides}\:\mathrm{2}^{\mathrm{20}} −\mathrm{1} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 14/May/18

let us solve analytically...  2^(20) −1=(2^5 )^4 −1  (32)^4 −1=(41−9)^4 −1  =(_ 41)^4 −4C_1 (41)^3 9+4C_2 (41)^2 .9^2 −4C_3 (41).9^3   +9^4 −1  so except (9^4 )rest terms are divisible by 41  now 9^4 −1  (9^2 )^2 −1  (82−1)^2 −1  (82^ )^2 −2×82×1+1−1  (82)^2 −2×82×1   this two terms also divdible  by 41 since 82 is divisible by 41

$${let}\:{us}\:{solve}\:{analytically}... \\ $$$$\mathrm{2}^{\mathrm{20}} −\mathrm{1}=\left(\mathrm{2}^{\mathrm{5}} \right)^{\mathrm{4}} −\mathrm{1} \\ $$$$\left(\mathrm{32}\right)^{\mathrm{4}} −\mathrm{1}=\left(\mathrm{41}−\mathrm{9}\right)^{\mathrm{4}} −\mathrm{1} \\ $$$$=\left(_{} \mathrm{41}\right)^{\mathrm{4}} −\mathrm{4}{C}_{\mathrm{1}} \left(\mathrm{41}\right)^{\mathrm{3}} \mathrm{9}+\mathrm{4}{C}_{\mathrm{2}} \left(\mathrm{41}\right)^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} −\mathrm{4}{C}_{\mathrm{3}} \left(\mathrm{41}\right).\mathrm{9}^{\mathrm{3}} \\ $$$$+\mathrm{9}^{\mathrm{4}} −\mathrm{1} \\ $$$${so}\:{except}\:\left(\mathrm{9}^{\mathrm{4}} \right){rest}\:{terms}\:{are}\:{divisible}\:{by}\:\mathrm{41} \\ $$$${now}\:\mathrm{9}^{\mathrm{4}} −\mathrm{1} \\ $$$$\left(\mathrm{9}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{1} \\ $$$$\left(\mathrm{82}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$\left(\mathrm{82}^{} \right)^{\mathrm{2}} −\mathrm{2}×\mathrm{82}×\mathrm{1}+\mathrm{1}−\mathrm{1} \\ $$$$\left(\mathrm{82}\right)^{\mathrm{2}} −\mathrm{2}×\mathrm{82}×\mathrm{1}\:\:\:{this}\:{two}\:{terms}\:{also}\:{divdible} \\ $$$${by}\:\mathrm{41}\:{since}\:\mathrm{82}\:{is}\:{divisible}\:{by}\:\mathrm{41} \\ $$

Commented by Rasheed.Sindhi last updated on 15/May/18

G^( O^(⌢) O^(⌢) ) D Approach!

$$\mathcal{G}^{\:\overset{\frown} {\mathcal{O}}\overset{\frown} {\mathcal{O}}} \mathcal{D}\:\mathcal{A}{pproach}! \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 15/May/18

thanx...we can post question along with   final answer so that we get satisfaction...  the people who post question may post question  different variety...

$${thanx}...{we}\:{can}\:{post}\:{question}\:{along}\:{with}\: \\ $$$${final}\:{answer}\:{so}\:{that}\:{we}\:{get}\:{satisfaction}... \\ $$$${the}\:{people}\:{who}\:{post}\:{question}\:{may}\:{post}\:{question} \\ $$$${different}\:{variety}... \\ $$

Answered by MJS last updated on 14/May/18

2^(20) mod 41=1  (2^(20) mod 41)=(2^(10) mod 41)^2 =(2^5 mod 41)^4 =  =(−9)(−9)(−9)(−9)=81×81=(−1)(−1)=1  multiplying remainders can be great fun ;−)

$$\mathrm{2}^{\mathrm{20}} \mathrm{mod}\:\mathrm{41}=\mathrm{1} \\ $$$$\left(\mathrm{2}^{\mathrm{20}} \mathrm{mod}\:\mathrm{41}\right)=\left(\mathrm{2}^{\mathrm{10}} \mathrm{mod}\:\mathrm{41}\right)^{\mathrm{2}} =\left(\mathrm{2}^{\mathrm{5}} \mathrm{mod}\:\mathrm{41}\right)^{\mathrm{4}} = \\ $$$$=\left(−\mathrm{9}\right)\left(−\mathrm{9}\right)\left(−\mathrm{9}\right)\left(−\mathrm{9}\right)=\mathrm{81}×\mathrm{81}=\left(−\mathrm{1}\right)\left(−\mathrm{1}\right)=\mathrm{1} \\ $$$$\left.\mathrm{multiplying}\:\mathrm{remainders}\:\mathrm{can}\:\mathrm{be}\:\mathrm{great}\:\mathrm{fun}\:;−\right) \\ $$

Commented by Rasheed.Sindhi last updated on 15/May/18

V_r ^( e) y Nice!...  But using congruence notation were  easier and prettier, I think.

$$\mathcal{V}_{{r}} ^{\:{e}} {y}\:\mathcal{N}{ice}!... \\ $$$$\mathrm{But}\:\mathrm{using}\:\mathrm{congruence}\:\mathrm{notation}\:\mathrm{were} \\ $$$$\mathrm{easier}\:\mathrm{and}\:\mathrm{prettier},\:\mathrm{I}\:\mathrm{think}. \\ $$

Commented by MJS last updated on 14/May/18

true

$$\mathrm{true} \\ $$

Answered by ajfour last updated on 14/May/18

41=2^5 +3^2   2^(20) =(41−3^2 )^4         =41^4 −4.3^2 .41^3 +6.3^4 .41^2             −4.3^6 .41+3^8   3^8 =(2×41−1)^2 =4×41^2 −4×41+1  hence   2^(20) =k(41)+1     ( ∀ k ∈ N )  or   41 divides 2^(20) −1 .

$$\mathrm{41}=\mathrm{2}^{\mathrm{5}} +\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{2}^{\mathrm{20}} =\left(\mathrm{41}−\mathrm{3}^{\mathrm{2}} \right)^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:=\mathrm{41}^{\mathrm{4}} −\mathrm{4}.\mathrm{3}^{\mathrm{2}} .\mathrm{41}^{\mathrm{3}} +\mathrm{6}.\mathrm{3}^{\mathrm{4}} .\mathrm{41}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:−\mathrm{4}.\mathrm{3}^{\mathrm{6}} .\mathrm{41}+\mathrm{3}^{\mathrm{8}} \\ $$$$\mathrm{3}^{\mathrm{8}} =\left(\mathrm{2}×\mathrm{41}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4}×\mathrm{41}^{\mathrm{2}} −\mathrm{4}×\mathrm{41}+\mathrm{1} \\ $$$${hence}\:\:\:\mathrm{2}^{\mathrm{20}} ={k}\left(\mathrm{41}\right)+\mathrm{1}\:\:\:\:\:\left(\:\forall\:{k}\:\in\:{N}\:\right) \\ $$$${or}\:\:\:\mathrm{41}\:{divides}\:\mathrm{2}^{\mathrm{20}} −\mathrm{1}\:. \\ $$

Commented by Rasheed.Sindhi last updated on 15/May/18

G^( O^(⌢) O^(⌢) ) D  Approach!

$$\mathcal{G}^{\:\overset{\frown} {\mathcal{O}}\overset{\frown} {\mathcal{O}}} \mathcal{D}\:\:\mathcal{A}{pproach}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com