Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 188247 by cortano12 last updated on 27/Feb/23

Prove that   (1) 5555^(2222) +2222^(5555)  divisible by 7  (2) 3^(105) +4^(105)  divisible by 7

$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5555}^{\mathrm{2222}} +\mathrm{2222}^{\mathrm{5555}} \:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{3}^{\mathrm{105}} +\mathrm{4}^{\mathrm{105}} \:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}\: \\ $$

Answered by Rasheed.Sindhi last updated on 27/Feb/23

(1)  5555^(2222) +2222^(5555) ≡0(mod 7)  (793×7+4)^(2222) +(317×7+3)^(5555) ≡0(mod 7  4^(2222) +3^(5555) ≡0(mod 7)      4^1 ≡4(mod 7)   3^1 ≡3(mod 7)      4^2 ≡2(mod 7)    3^2 ≡2(mod 7)      4^3 ≡1(mod 7)   3^3 ≡−1(mod 7)      4^6 ≡1(mod 7)   3^6 ≡1(mod 7)  4^(2222) +3^(5555) ≡0(mod 7)  4^(370×6+2) +3^(925×6+5) ≡0(mod 7)  4^2 +3^5 ≡0(mod 7)  16+243≡0(mod 7)  259≡0(mod 7) clearly true  (2)      3^(105) +4^(105) ≡0(mod 7)      3^(17×6+3) +4^(17×6+3) ≡0(mod 7)     3^3 +4^3 ≡0(mod 7)     27+64≡0(mod 7)     91≡0(mod 7)    7×13≡(mod 7) clearly true

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{5555}^{\mathrm{2222}} +\mathrm{2222}^{\mathrm{5555}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\left(\mathrm{793}×\mathrm{7}+\mathrm{4}\right)^{\mathrm{2222}} +\left(\mathrm{317}×\mathrm{7}+\mathrm{3}\right)^{\mathrm{5555}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right. \\ $$$$\mathrm{4}^{\mathrm{2222}} +\mathrm{3}^{\mathrm{5555}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\:\mathrm{4}^{\mathrm{1}} \equiv\mathrm{4}\left({mod}\:\mathrm{7}\right)\:\:\:\mathrm{3}^{\mathrm{1}} \equiv\mathrm{3}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\:\mathrm{4}^{\mathrm{2}} \equiv\mathrm{2}\left({mod}\:\mathrm{7}\right)\:\:\:\:\mathrm{3}^{\mathrm{2}} \equiv\mathrm{2}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\:\mathrm{4}^{\mathrm{3}} \equiv\mathrm{1}\left({mod}\:\mathrm{7}\right)\:\:\:\mathrm{3}^{\mathrm{3}} \equiv−\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\:\mathrm{4}^{\mathrm{6}} \equiv\mathrm{1}\left({mod}\:\mathrm{7}\right)\:\:\:\mathrm{3}^{\mathrm{6}} \equiv\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{4}^{\mathrm{2222}} +\mathrm{3}^{\mathrm{5555}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{4}^{\mathrm{370}×\mathrm{6}+\mathrm{2}} +\mathrm{3}^{\mathrm{925}×\mathrm{6}+\mathrm{5}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{5}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{16}+\mathrm{243}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\mathrm{259}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right)\:{clearly}\:{true} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\mathrm{3}^{\mathrm{105}} +\mathrm{4}^{\mathrm{105}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\:\mathrm{3}^{\mathrm{17}×\mathrm{6}+\mathrm{3}} +\mathrm{4}^{\mathrm{17}×\mathrm{6}+\mathrm{3}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{3}} \equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\mathrm{27}+\mathrm{64}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:\mathrm{91}\equiv\mathrm{0}\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\mathrm{7}×\mathrm{13}\equiv\left({mod}\:\mathrm{7}\right)\:{clearly}\:{true} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com