Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 216445 by Tawa11 last updated on 08/Feb/25

Prove that  Γ((1/2))  =  (√π)

$$\mathrm{Prove}\:\mathrm{that}\:\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:=\:\:\sqrt{\pi} \\ $$

Commented by Mathstar last updated on 08/Feb/25

Γ(x)Γ(1−x)=(π/(sin(πx)))  Let x=(1/2)  Γ^2 ((1/2))=π ⇒ Γ((1/2)) = (√π)

$$\Gamma\left(\mathrm{x}\right)\Gamma\left(\mathrm{1}−\mathrm{x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi\mathrm{x}\right)} \\ $$$$\mathrm{Let}\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\pi\:\Rightarrow\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\sqrt{\pi} \\ $$

Commented by Tawa11 last updated on 10/Feb/25

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Answered by MrGaster last updated on 08/Feb/25

=∫_0 ^∞ t^(−(1/2)) e^(−t) dt  Let t=x^2 ⇒dt=2xdx⇒∫_0 ^∞ t^(−(1/2)) e^(−t) dt=∫_0 ^∞ x^(−1) e^(−x^2 ) 2xdx=2∫_0 ^∞ e^(−x^2 ) dx  Let I=∫_0 ^∞ e^(−x^2 ) dx⇒I^2 =(∫_0 ^∞ e^(−x^2 ) dx)(∫_0 ^∞ e^(−y^2 ) dy)=∫_0 ^∞ ∫_0 ^∞ e^(−(x^2 +y^2 )) dxdy  x=r cos θ,y=r sin θ⇒dxdy=r dr dθ  ∫_0 ^∞ ∫_0 ^∞ e^(−(x^2 +y^2 )) dxdy=∫_0 ^(π/2) ∫_0 ^(π/2) e^(−r^2 ) rdrdθ=(π/2)∫_0 ^∞ e^(−r^2 ) r dr  Let u=r^2 ⇒du=2rdr⇒∫_0 ^∞ e^(−r^2 ) rdr=(1/2)∫_0 ^∞ e^(−u) du=(1/2)  I^2 =(π/2)∙(1/2)=(π/4)⇒I=((√π)/2)   determinant (((Γ((1/2))=2I=2∙((√π)/2)=“(√π)”)))

$$=\int_{\mathrm{0}} ^{\infty} {t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt} \\ $$$$\mathrm{Let}\:{t}={x}^{\mathrm{2}} \Rightarrow{dt}=\mathrm{2}{xdx}\Rightarrow\int_{\mathrm{0}} ^{\infty} {t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{1}} {e}^{−{x}^{\mathrm{2}} } \mathrm{2}{xdx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\mathrm{Let}\:{I}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\Rightarrow{I}^{\mathrm{2}} =\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\right)\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{y}^{\mathrm{2}} } {dy}\right)=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$${x}={r}\:\mathrm{cos}\:\theta,{y}={r}\:\mathrm{sin}\:\theta\Rightarrow{dxdy}={r}\:{dr}\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{−{r}^{\mathrm{2}} } {rdrd}\theta=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {r}\:{dr} \\ $$$$\mathrm{Let}\:{u}={r}^{\mathrm{2}} \Rightarrow{du}=\mathrm{2}{rdr}\Rightarrow\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {rdr}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {du}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}^{\mathrm{2}} =\frac{\pi}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}\Rightarrow{I}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\begin{array}{|c|}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}{I}=\mathrm{2}\centerdot\frac{\sqrt{\pi}}{\mathrm{2}}=``\sqrt{\pi}''}\\\hline\end{array} \\ $$

Commented by issac last updated on 08/Feb/25

Oh... I think you′re more accurate.  I solved using a function  ∫  t^(α−1) e^(−t) dt=−Γ(α,z)+C  that was already defined and  you approached it at little closer to the   method of Calculus

$$\mathrm{Oh}...\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}'\mathrm{re}\:\mathrm{more}\:\mathrm{accurate}. \\ $$$$\mathrm{I}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{a}\:\mathrm{function} \\ $$$$\int\:\:{t}^{\alpha−\mathrm{1}} {e}^{−{t}} {dt}=−\Gamma\left(\alpha,{z}\right)+{C} \\ $$$$\mathrm{that}\:\mathrm{was}\:\mathrm{already}\:\mathrm{defined}\:\mathrm{and} \\ $$$$\mathrm{you}\:\mathrm{approached}\:\mathrm{it}\:\mathrm{at}\:\mathrm{little}\:\mathrm{closer}\:\mathrm{to}\:\mathrm{the}\: \\ $$$$\mathrm{method}\:\mathrm{of}\:\mathrm{Calculus} \\ $$

Commented by Tawa11 last updated on 10/Feb/25

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Answered by issac last updated on 08/Feb/25

Γ(z)=∫_0 ^( ∞)  t^(z−1) e^(−t) dt , R(z)>0  Γ((1/2))=∫_0 ^( ∞)  (e^(−t) /( (√t))) dt  ∫  t^α e^(−t) dt=−Γ(α+1,t)+C  (Γ(α,t) is incomplete gamma function)  ∫  t^(−(1/2)) e^(−t) dt=−Γ((1/2),t)+C  ∴∫_0 ^( ∞)  t^(−(1/2)) e^(−t) dt=[−Γ((1/2),t)]_(t=0) ^(t=∞) =(√π).

$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt}\:,\:\mathfrak{R}\left({z}\right)>\mathrm{0} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{t}} }{\:\sqrt{{t}}}\:{dt} \\ $$$$\int\:\:{t}^{\alpha} {e}^{−{t}} {dt}=−\Gamma\left(\alpha+\mathrm{1},{t}\right)+{C} \\ $$$$\left(\Gamma\left(\alpha,{t}\right)\:\mathrm{is}\:\mathrm{incomplete}\:\mathrm{gamma}\:\mathrm{function}\right) \\ $$$$\int\:\:{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt}=−\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{t}\right)+{C} \\ $$$$\therefore\int_{\mathrm{0}} ^{\:\infty} \:{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt}=\left[−\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{t}\right)\right]_{{t}=\mathrm{0}} ^{{t}=\infty} =\sqrt{\pi}. \\ $$

Commented by Tawa11 last updated on 10/Feb/25

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com