Question Number 216445 by Tawa11 last updated on 08/Feb/25 | ||
![]() | ||
$$\mathrm{Prove}\:\mathrm{that}\:\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:=\:\:\sqrt{\pi} \\ $$ | ||
Commented by Mathstar last updated on 08/Feb/25 | ||
![]() | ||
$$\Gamma\left(\mathrm{x}\right)\Gamma\left(\mathrm{1}−\mathrm{x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi\mathrm{x}\right)} \\ $$$$\mathrm{Let}\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\pi\:\Rightarrow\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\sqrt{\pi} \\ $$ | ||
Commented by Tawa11 last updated on 10/Feb/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||
Answered by MrGaster last updated on 08/Feb/25 | ||
![]() | ||
$$=\int_{\mathrm{0}} ^{\infty} {t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt} \\ $$$$\mathrm{Let}\:{t}={x}^{\mathrm{2}} \Rightarrow{dt}=\mathrm{2}{xdx}\Rightarrow\int_{\mathrm{0}} ^{\infty} {t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{1}} {e}^{−{x}^{\mathrm{2}} } \mathrm{2}{xdx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\mathrm{Let}\:{I}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\Rightarrow{I}^{\mathrm{2}} =\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\right)\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{y}^{\mathrm{2}} } {dy}\right)=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$${x}={r}\:\mathrm{cos}\:\theta,{y}={r}\:\mathrm{sin}\:\theta\Rightarrow{dxdy}={r}\:{dr}\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{−{r}^{\mathrm{2}} } {rdrd}\theta=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {r}\:{dr} \\ $$$$\mathrm{Let}\:{u}={r}^{\mathrm{2}} \Rightarrow{du}=\mathrm{2}{rdr}\Rightarrow\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {rdr}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {du}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}^{\mathrm{2}} =\frac{\pi}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}\Rightarrow{I}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\begin{array}{|c|}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}{I}=\mathrm{2}\centerdot\frac{\sqrt{\pi}}{\mathrm{2}}=``\sqrt{\pi}''}\\\hline\end{array} \\ $$ | ||
Commented by issac last updated on 08/Feb/25 | ||
![]() | ||
$$\mathrm{Oh}...\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}'\mathrm{re}\:\mathrm{more}\:\mathrm{accurate}. \\ $$$$\mathrm{I}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{a}\:\mathrm{function} \\ $$$$\int\:\:{t}^{\alpha−\mathrm{1}} {e}^{−{t}} {dt}=−\Gamma\left(\alpha,{z}\right)+{C} \\ $$$$\mathrm{that}\:\mathrm{was}\:\mathrm{already}\:\mathrm{defined}\:\mathrm{and} \\ $$$$\mathrm{you}\:\mathrm{approached}\:\mathrm{it}\:\mathrm{at}\:\mathrm{little}\:\mathrm{closer}\:\mathrm{to}\:\mathrm{the}\: \\ $$$$\mathrm{method}\:\mathrm{of}\:\mathrm{Calculus} \\ $$ | ||
Commented by Tawa11 last updated on 10/Feb/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||
Answered by issac last updated on 08/Feb/25 | ||
![]() | ||
$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt}\:,\:\mathfrak{R}\left({z}\right)>\mathrm{0} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{t}} }{\:\sqrt{{t}}}\:{dt} \\ $$$$\int\:\:{t}^{\alpha} {e}^{−{t}} {dt}=−\Gamma\left(\alpha+\mathrm{1},{t}\right)+{C} \\ $$$$\left(\Gamma\left(\alpha,{t}\right)\:\mathrm{is}\:\mathrm{incomplete}\:\mathrm{gamma}\:\mathrm{function}\right) \\ $$$$\int\:\:{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt}=−\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{t}\right)+{C} \\ $$$$\therefore\int_{\mathrm{0}} ^{\:\infty} \:{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{t}} {dt}=\left[−\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{t}\right)\right]_{{t}=\mathrm{0}} ^{{t}=\infty} =\sqrt{\pi}. \\ $$ | ||
Commented by Tawa11 last updated on 10/Feb/25 | ||
![]() | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||