Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 216914 by hardmath last updated on 24/Feb/25

Prove that:  (1/(1001))  +  (1/(1002))  +  ...  +  (1/(2000))  >  (5/8)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1001}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1002}}\:\:+\:\:...\:\:+\:\:\frac{\mathrm{1}}{\mathrm{2000}}\:\:>\:\:\frac{\mathrm{5}}{\mathrm{8}} \\ $$

Answered by MrGaster last updated on 24/Feb/25

Σ_(k=1001) ^(2000) (1/k)>(5/8)  ∫_(1001) ^(2001) (1/x)dx>(5/8)  ln(20001)−ln(1001)>(5/8)  ln(((2001)/(1001)))>(5/8)  ln(2.000999)>(5/8)  0.693147>0.626  [Q.E.D]

$$\underset{{k}=\mathrm{1001}} {\overset{\mathrm{2000}} {\sum}}\frac{\mathrm{1}}{{k}}>\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\int_{\mathrm{1001}} ^{\mathrm{2001}} \frac{\mathrm{1}}{{x}}{dx}>\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{ln}\left(\mathrm{20001}\right)−\mathrm{ln}\left(\mathrm{1001}\right)>\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{ln}\left(\frac{\mathrm{2001}}{\mathrm{1001}}\right)>\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{ln}\left(\mathrm{2}.\mathrm{000999}\right)>\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{0}.\mathrm{693147}>\mathrm{0}.\mathrm{626} \\ $$$$\left[\mathrm{Q}.\mathrm{E}.\mathrm{D}\right] \\ $$

Commented by mehdee7396 last updated on 25/Feb/25

why  Σ(1/k)>(5/8)⇒∫(1/x)dx>(5/8)  ?

$${why}\:\:\Sigma\frac{\mathrm{1}}{{k}}>\frac{\mathrm{5}}{\mathrm{8}}\Rightarrow\int\frac{\mathrm{1}}{{x}}{dx}>\frac{\mathrm{5}}{\mathrm{8}}\:\:? \\ $$$$ \\ $$

Answered by mehdee7396 last updated on 25/Feb/25

s>((0.1999)/(2000))+((0.1999)/(2000))+...+((0.1999)/(2000))  =((1999)/(2000))>(5/8)

$${s}>\frac{\mathrm{0}.\mathrm{1999}}{\mathrm{2000}}+\frac{\mathrm{0}.\mathrm{1999}}{\mathrm{2000}}+...+\frac{\mathrm{0}.\mathrm{1999}}{\mathrm{2000}} \\ $$$$=\frac{\mathrm{1999}}{\mathrm{2000}}>\frac{\mathrm{5}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com