Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 197113 by Erico last updated on 08/Sep/23

Prove that  ∫^( +∞) _( 0) (((ln(t+(√(1+t^2 ))))/t))dt=(π^2 /2)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left(\frac{{ln}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)}{{t}}\right){dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$

Answered by witcher3 last updated on 08/Sep/23

ln(t+(√(1+t^2 )))>2,∀x≥e  ∫_2 ^∞ ((ln(t+(√(t^2 +1))))/t)≥∫_2 ^∞ (2/t)dt=∞ integral didnt cv

$$\mathrm{ln}\left(\mathrm{t}+\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)>\mathrm{2},\forall\mathrm{x}\geqslant\mathrm{e} \\ $$$$\int_{\mathrm{2}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{t}+\sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{1}}\right)}{\mathrm{t}}\geqslant\int_{\mathrm{2}} ^{\infty} \frac{\mathrm{2}}{\mathrm{t}}\mathrm{dt}=\infty\:\mathrm{integral}\:\mathrm{didnt}\:\mathrm{cv} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com