Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 131580 by Dwaipayan Shikari last updated on 06/Feb/21

Prove or disprove  Ī£_(n=0) ^āˆž (1/((n^2 +97)^2 ))=(š›‘^2 /(97(e^(š›‘(āˆš(97))) āˆ’e^(āˆ’š›‘(āˆš(97))) )^2 ))+(š›‘/(388)).((e^(2š›‘(āˆš(97))) +1)/(e^(2š›‘(āˆš(97))) āˆ’1))+((37635)/(37636))āˆ’(1/( 388(āˆš(97))))

$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{disprove}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{97}\right)^{\mathrm{2}} }=\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{97}\left(\boldsymbol{{e}}^{\boldsymbol{\pi}\sqrt{\mathrm{97}}} āˆ’{e}^{āˆ’\boldsymbol{\pi}\sqrt{\mathrm{97}}} \right)^{\mathrm{2}} }+\frac{\boldsymbol{\pi}}{\mathrm{388}}.\frac{{e}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} +\mathrm{1}}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} āˆ’\mathrm{1}}+\frac{\mathrm{37635}}{\mathrm{37636}}āˆ’\frac{\mathrm{1}}{\:\mathrm{388}\sqrt{\mathrm{97}}} \\ $$

Commented by Dwaipayan Shikari last updated on 06/Feb/21

I have this result but not sure..

$${I}\:{have}\:{this}\:{result}\:{but}\:{not}\:{sure}.. \\ $$

Commented by mindispower last updated on 09/Feb/21

seem exacte   deduce this  starting  withe   cot(x)=(1/x)+2Ī£_(nā‰„1) (x/(x^2 āˆ’Ļ€^2 n^2 ))  coth(x)=āˆ’(1/x)āˆ’2Ī£(x/(x^2 +n^2 Ļ€^2 ))  (1/y)coth(Ļ€y)=āˆ’(1/(Ļ€y^2 ))āˆ’(2/Ļ€)Ī£(1/(y^2 +n^2 ))  Ī£(1/((y^2 +n^2 )))=(Ļ€/2)((1/(Ļ€y^2 ))āˆ’((coth(Ļ€y))/y))  ā‡’Ī£_(nā‰„1) ((2y)/((y^2 +n^2 )^2 ))=āˆ’(1/y^3 )+(Ļ€/(2y^2 ))coth(Ļ€y)āˆ’(Ļ€^2 /(2y))(āˆ’1+coth^2 (Ļ€y))

$${seem}\:{exacte}\: \\ $$$${deduce}\:{this} \\ $$$${starting} \\ $$$${withe}\: \\ $$$${cot}\left({x}\right)=\frac{\mathrm{1}}{{x}}+\mathrm{2}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{x}}{{x}^{\mathrm{2}} āˆ’\pi^{\mathrm{2}} {n}^{\mathrm{2}} } \\ $$$${coth}\left({x}\right)=āˆ’\frac{\mathrm{1}}{{x}}āˆ’\mathrm{2}\Sigma\frac{{x}}{{x}^{\mathrm{2}} +{n}^{\mathrm{2}} \pi^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{y}}{coth}\left(\pi{y}\right)=āˆ’\frac{\mathrm{1}}{\pi{y}^{\mathrm{2}} }āˆ’\frac{\mathrm{2}}{\pi}\Sigma\frac{\mathrm{1}}{{y}^{\mathrm{2}} +{n}^{\mathrm{2}} } \\ $$$$\Sigma\frac{\mathrm{1}}{\left({y}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)}=\frac{\pi}{\mathrm{2}}\left(\frac{\mathrm{1}}{\pi{y}^{\mathrm{2}} }āˆ’\frac{{coth}\left(\pi{y}\right)}{{y}}\right) \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}{y}}{\left({y}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)^{\mathrm{2}} }=āˆ’\frac{\mathrm{1}}{{y}^{\mathrm{3}} }+\frac{\pi}{\mathrm{2}{y}^{\mathrm{2}} }{coth}\left(\pi{y}\right)āˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{2}{y}}\left(āˆ’\mathrm{1}+{coth}^{\mathrm{2}} \left(\pi{y}\right)\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com