Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 216907 by MrGaster last updated on 24/Feb/25

Prove:n!=1+Σ_(k=1) ^∞ (k^n /e^k )−Σ_(k=1) ^∞ ((B_k sin(πk)(n−k)!)/(πk))

$$\mathrm{Prove}:{n}!=\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}^{{n}} }{{e}^{{k}} }−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{B}_{{k}} \mathrm{sin}\left(\pi{k}\right)\left({n}−{k}\right)!}{\pi{k}} \\ $$

Answered by MrGaster last updated on 13/Mar/25

Let f(x)=(x/(e^x −1))&^⇔ (x/(e^x −1))=Σ_(k=0) ^∞ (B_k /(k!))x^k   n!&n!=Γ(n+1)⇒Γ(n+1)=∫_0 ^∞ t^n e^(−t) dt  Using the Euler-Maclaurinr  ⇒Σ_(k=1) ^∞ f(k)=∫_1 ^∞ f(x)dx+((f(1))/2)+Σ_(k=1) ^m (B_(2k) /((2k)!))f^((2k+1)) (1)+R_m   f(x)=(x^n /e^x )⇒Σ_(k=1) ^∞ (k^n /e^k )=∫_1 ^∞ (x^n /e^x )dx+(1/(2e))+R_m &^⇔ f(x)=((B_k sin(πk)(n−k)!)/(πk))⇒Σ_(n=1) ^∞ ((B_k sin(πk)(n−k)!)/(πk))=∫_1 ^∞ ((B_k sin(πx)(n−x)!)/(πx))dx+((B_1 sin(π)(n−1)!)/π)+Σ_(k=1) ^m (B_(2k) /((2k)!)) (d^(2k−1) /dx^(2k−1) )(((B_k sin(πx)(n−x)!)/(πx)))∣_(x=1) +R_m   Combining these results⇒n!=1+Σ_(k=1) ^∞ (k^n /e^k )−Σ_(k=1) ^∞ ((B_k sin(πk)(n−k)!)/(πk))  [Q.E.D]

$$\mathrm{Let}\:{f}\left({x}\right)=\frac{{x}}{{e}^{{x}} −\mathrm{1}}\overset{\Leftrightarrow} {\&}\frac{{x}}{{e}^{{x}} −\mathrm{1}}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{B}_{{k}} }{{k}!}{x}^{{k}} \\ $$$${n}!\&{n}!=\Gamma\left({n}+\mathrm{1}\right)\Rightarrow\Gamma\left({n}+\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{n}} {e}^{−{t}} {dt} \\ $$$$\mathrm{Using}\:\mathrm{the}\:\mathrm{Euler}-\mathrm{Maclaurinr} \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}{f}\left({k}\right)=\int_{\mathrm{1}} ^{\infty} {f}\left({x}\right){dx}+\frac{{f}\left(\mathrm{1}\right)}{\mathrm{2}}+\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{{B}_{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}{f}^{\left(\mathrm{2}{k}+\mathrm{1}\right)} \left(\mathrm{1}\right)+{R}_{{m}} \\ $$$${f}\left({x}\right)=\frac{{x}^{{n}} }{{e}^{{x}} }\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}^{{n}} }{{e}^{{k}} }=\int_{\mathrm{1}} ^{\infty} \frac{{x}^{{n}} }{{e}^{{x}} }{dx}+\frac{\mathrm{1}}{\mathrm{2}{e}}+{R}_{{m}} \overset{\Leftrightarrow} {\&}{f}\left({x}\right)=\frac{{B}_{{k}} \mathrm{sin}\left(\pi{k}\right)\left({n}−{k}\right)!}{\pi{k}}\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{B}_{{k}} \mathrm{sin}\left(\pi{k}\right)\left({n}−{k}\right)!}{\pi{k}}=\int_{\mathrm{1}} ^{\infty} \frac{{B}_{{k}} \mathrm{sin}\left(\pi{x}\right)\left({n}−{x}\right)!}{\pi{x}}{dx}+\frac{{B}_{\mathrm{1}} \mathrm{sin}\left(\pi\right)\left({n}−\mathrm{1}\right)!}{\pi}+\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{{B}_{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\:\frac{{d}^{\mathrm{2}{k}−\mathrm{1}} }{{dx}^{\mathrm{2}{k}−\mathrm{1}} }\left(\frac{{B}_{{k}} \mathrm{sin}\left(\pi{x}\right)\left({n}−{x}\right)!}{\pi{x}}\right)\mid_{{x}=\mathrm{1}} +{R}_{{m}} \\ $$$$\mathrm{Combining}\:\mathrm{these}\:\mathrm{results}\Rightarrow{n}!=\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}^{{n}} }{{e}^{{k}} }−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{B}_{{k}} \mathrm{sin}\left(\pi{k}\right)\left({n}−{k}\right)!}{\pi{k}} \\ $$$$\left[\mathrm{Q}.\mathrm{E}.\mathrm{D}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com