Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 76037 by Crabby89p13 last updated on 22/Dec/19

Prove That  sin 3°sin 39°sin 75°=sin 9°sin 24°sin 30°

$${Prove}\:{That} \\ $$$$\mathrm{sin}\:\mathrm{3}°\mathrm{sin}\:\mathrm{39}°\mathrm{sin}\:\mathrm{75}°=\mathrm{sin}\:\mathrm{9}°\mathrm{sin}\:\mathrm{24}°\mathrm{sin}\:\mathrm{30}° \\ $$

Answered by MJS last updated on 23/Dec/19

sin 3 =sin (75−2×36) =  =2cos^2  36 sin 75 −2sin 36 cos 36 cos 75 −sin 75 =  sin 39 =sin (75−36) =  =cos 36 sin 75 −sin 36 cos 75  sin 9 =sin (45−36) =  =cos 36 sin 45 −sin 36 cos 45  sin 24 =sin (60−36) =  =cos 36 sin 60 −sin 36 cos 60  let sin 36 =u∧cos 36 =v  sin 75 =(((√6)+(√2))/4); cos 75 =(((√6)−(√2))/4)  sin 45 =cos 45 =(√2)  sin 60 =((√3)/2); cos 60 =(1/2)  the equation now is  ((3(√6)+5(√2))/8)v^3 −(((√6)+(√2))/4)uv^2 +(((√6)−(√2))/8)u^2 v−((3(√6)+5(√2))/(16))v+(((√6)+(√2))/(16))u=  =(((√6)−(√2))/8)v^2 −(((√6)+(√2))/8)uv+((√2)/8)  now I tried a while...  let u^2 =1−v^2   ⇒  (((√6)+3(√2))/4)v^3 −((((√6)+(√2))/4)u+(((√6)−(√2))/8))v^2 +((((√6)+(√2))/8)u−(((√6)+7(√3))/(16)))v+(((√6)+(√2))/(16))u+((√2)/8)=0  but we can solve this for u  u=(√3)v−1+(√3) ⇔ v_1 =((√3)/3)(u+1−(√3))  ⇒  (v−((√3)/3)(u+1−(√3)))(v^2 −(v/2)−(1/4))=0  ⇒ v_2 =((1−(√5))/4); v_3 =((1+(√5))/4)  but v=cos 36 =((1+(√5))/4)  proved

$$\mathrm{sin}\:\mathrm{3}\:=\mathrm{sin}\:\left(\mathrm{75}−\mathrm{2}×\mathrm{36}\right)\:= \\ $$$$=\mathrm{2cos}^{\mathrm{2}} \:\mathrm{36}\:\mathrm{sin}\:\mathrm{75}\:−\mathrm{2sin}\:\mathrm{36}\:\mathrm{cos}\:\mathrm{36}\:\mathrm{cos}\:\mathrm{75}\:−\mathrm{sin}\:\mathrm{75}\:= \\ $$$$\mathrm{sin}\:\mathrm{39}\:=\mathrm{sin}\:\left(\mathrm{75}−\mathrm{36}\right)\:= \\ $$$$=\mathrm{cos}\:\mathrm{36}\:\mathrm{sin}\:\mathrm{75}\:−\mathrm{sin}\:\mathrm{36}\:\mathrm{cos}\:\mathrm{75} \\ $$$$\mathrm{sin}\:\mathrm{9}\:=\mathrm{sin}\:\left(\mathrm{45}−\mathrm{36}\right)\:= \\ $$$$=\mathrm{cos}\:\mathrm{36}\:\mathrm{sin}\:\mathrm{45}\:−\mathrm{sin}\:\mathrm{36}\:\mathrm{cos}\:\mathrm{45} \\ $$$$\mathrm{sin}\:\mathrm{24}\:=\mathrm{sin}\:\left(\mathrm{60}−\mathrm{36}\right)\:= \\ $$$$=\mathrm{cos}\:\mathrm{36}\:\mathrm{sin}\:\mathrm{60}\:−\mathrm{sin}\:\mathrm{36}\:\mathrm{cos}\:\mathrm{60} \\ $$$$\mathrm{let}\:\mathrm{sin}\:\mathrm{36}\:={u}\wedge\mathrm{cos}\:\mathrm{36}\:={v} \\ $$$$\mathrm{sin}\:\mathrm{75}\:=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}};\:\mathrm{cos}\:\mathrm{75}\:=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\mathrm{sin}\:\mathrm{45}\:=\mathrm{cos}\:\mathrm{45}\:=\sqrt{\mathrm{2}} \\ $$$$\mathrm{sin}\:\mathrm{60}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}};\:\mathrm{cos}\:\mathrm{60}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{now}\:\mathrm{is} \\ $$$$\frac{\mathrm{3}\sqrt{\mathrm{6}}+\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}}{v}^{\mathrm{3}} −\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}{uv}^{\mathrm{2}} +\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{8}}{u}^{\mathrm{2}} {v}−\frac{\mathrm{3}\sqrt{\mathrm{6}}+\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{16}}{v}+\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{16}}{u}= \\ $$$$=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{8}}{v}^{\mathrm{2}} −\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{8}}{uv}+\frac{\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$$\mathrm{now}\:\mathrm{I}\:\mathrm{tried}\:\mathrm{a}\:\mathrm{while}... \\ $$$$\mathrm{let}\:{u}^{\mathrm{2}} =\mathrm{1}−{v}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\frac{\sqrt{\mathrm{6}}+\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}}{v}^{\mathrm{3}} −\left(\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}{u}+\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{8}}\right){v}^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{8}}{u}−\frac{\sqrt{\mathrm{6}}+\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{16}}\right){v}+\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{16}}{u}+\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}=\mathrm{0} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{for}\:{u} \\ $$$${u}=\sqrt{\mathrm{3}}{v}−\mathrm{1}+\sqrt{\mathrm{3}}\:\Leftrightarrow\:{v}_{\mathrm{1}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left({u}+\mathrm{1}−\sqrt{\mathrm{3}}\right) \\ $$$$\Rightarrow \\ $$$$\left({v}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left({u}+\mathrm{1}−\sqrt{\mathrm{3}}\right)\right)\left({v}^{\mathrm{2}} −\frac{{v}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{v}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{4}};\:{v}_{\mathrm{3}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{but}\:{v}=\mathrm{cos}\:\mathrm{36}\:=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{proved} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com