Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 195848 by pete last updated on 11/Aug/23

Please how did ∣z−a∣=r became   z= a + re^(iθ) ?

$$\mathrm{Please}\:\mathrm{how}\:\mathrm{did}\:\mid\mathrm{z}−\mathrm{a}\mid=\mathrm{r}\:\mathrm{became}\: \\ $$$$\mathrm{z}=\:\mathrm{a}\:+\:\mathrm{re}^{\mathrm{i}\theta} ? \\ $$

Answered by Frix last updated on 11/Aug/23

∣z−a∣=r ⇒ z−a=re^(iθ)   This step is always true, even for z−a∈R  because we can always find a θ: if z−a>0  ⇒ θ=0, if z−a<0 ⇒ θ=π  z−a=re^(iθ)  ⇔ z=a+re^(iθ)

$$\mid{z}−{a}\mid={r}\:\Rightarrow\:{z}−{a}={r}\mathrm{e}^{\mathrm{i}\theta} \\ $$$$\mathrm{This}\:\mathrm{step}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true},\:\mathrm{even}\:\mathrm{for}\:{z}−{a}\in\mathbb{R} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{can}\:\mathrm{always}\:\mathrm{find}\:\mathrm{a}\:\theta:\:\mathrm{if}\:{z}−{a}>\mathrm{0} \\ $$$$\Rightarrow\:\theta=\mathrm{0},\:\mathrm{if}\:{z}−{a}<\mathrm{0}\:\Rightarrow\:\theta=\pi \\ $$$${z}−{a}={r}\mathrm{e}^{\mathrm{i}\theta} \:\Leftrightarrow\:{z}={a}+{r}\mathrm{e}^{\mathrm{i}\theta} \\ $$

Answered by deleteduser1 last updated on 11/Aug/23

∣z−a∣=r is the equation for the circle centered  at a with radius r  So,we get z(points on the circle) by translating  a circle with centre at the origin(0,0) and radius  r to a  re^(iθ)  ⇒the locus of points generated by rotating  a vector with magnitude r around the origin(this  gives a circle)  +a⇒translating re^(iθ)   by a,the centre(origin) is  also translated by a  ⇒re^(iθ) +a gives a circle with centre at a[∣z−a∣=r]

$$\mid{z}−{a}\mid={r}\:{is}\:{the}\:{equation}\:{for}\:{the}\:{circle}\:{centered} \\ $$$${at}\:{a}\:{with}\:{radius}\:{r} \\ $$$${So},{we}\:{get}\:{z}\left({points}\:{on}\:{the}\:{circle}\right)\:{by}\:{translating} \\ $$$${a}\:{circle}\:{with}\:{centre}\:{at}\:{the}\:{origin}\left(\mathrm{0},\mathrm{0}\right)\:{and}\:{radius} \\ $$$${r}\:{to}\:{a} \\ $$$${re}^{{i}\theta} \:\Rightarrow{the}\:{locus}\:{of}\:{points}\:{generated}\:{by}\:{rotating} \\ $$$${a}\:{vector}\:{with}\:{magnitude}\:{r}\:{around}\:{the}\:{origin}\left({this}\right. \\ $$$$\left.{gives}\:{a}\:{circle}\right) \\ $$$$+{a}\Rightarrow{translating}\:{re}^{{i}\theta} \:\:{by}\:{a},{the}\:{centre}\left({origin}\right)\:{is} \\ $$$${also}\:{translated}\:{by}\:{a} \\ $$$$\Rightarrow{re}^{{i}\theta} +{a}\:{gives}\:{a}\:{circle}\:{with}\:{centre}\:{at}\:{a}\left[\mid{z}−{a}\mid={r}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com