Question and Answers Forum

All Questions   Topic List

Permutation and CombinationQuestion and Answers: Page 3

Question Number 194638    Answers: 1   Comments: 1

Prove that ∀n∈IN^∗ Σ_(k=1) ^(2^n −1) (1/(sin^2 (((kπ)/2^(n+1) ))))= ((2^(2n+1) −2)/3) Give in terms of n Σ_(k=1) ^(2^n −1) (1/(sin^4 (((kπ)/2^(n+1) ))))

$$\mathrm{Prove}\:\mathrm{that}\:\forall{n}\in\mathrm{IN}^{\ast} \:\:\:\:\: \\ $$$$\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}=\:\frac{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{Give}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{4}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)} \\ $$

Question Number 193864    Answers: 1   Comments: 0

Question Number 193368    Answers: 2   Comments: 0

If log_a y = (1/3) and log_8 a = x + 1 then show that y = 2^(x + 1)

$$\mathrm{If}\:\mathrm{log}_{{a}} {y}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{and}\:\mathrm{log}_{\mathrm{8}} {a}\:=\:{x}\:+\:\mathrm{1}\:\mathrm{then}\:\mathrm{show} \\ $$$$\mathrm{that}\:{y}\:=\:\mathrm{2}^{{x}\:+\:\mathrm{1}} \\ $$

Question Number 192960    Answers: 0   Comments: 0

$$ \\ $$

Question Number 192256    Answers: 0   Comments: 0

given f(x)=cx(x−20) and A=(2,5) find the nearst point to A on the graph

$$\mathrm{given}\:{f}\left({x}\right)={cx}\left({x}−\mathrm{20}\right)\:\mathrm{and}\:{A}=\left(\mathrm{2},\mathrm{5}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{nearst}\:\mathrm{point}\:\mathrm{to}\:{A}\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph} \\ $$

Question Number 191934    Answers: 1   Comments: 0

Question Number 191277    Answers: 0   Comments: 0

Question Number 190738    Answers: 0   Comments: 0

∫_0 ^( (π/2)) (((sin((x/2^n )))/(sinx))) dx , n ∈ N

$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\left(\frac{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}{{sinx}}\right)\:{dx}\:,\:{n}\:\in\:\mathbb{N} \\ $$

Question Number 190602    Answers: 1   Comments: 0

let S={a,b,c,d,e,f} if we take any subset S (same subset is allowed), it also can be S, which will form S if we join them, order of operation does not matter ({a,b,c,d},{d,e,f}) is the same as ({d,e,f},{a,b,c,d}) how many ways can we choose?

$$ \\ $$$$\: \\ $$$$\:{let}\:{S}=\left\{{a},{b},{c},{d},{e},{f}\right\} \\ $$$$\:{if}\:{we}\:{take}\:{any}\:{subset}\:{S}\:\left({same}\:{subset}\:{is}\:{allowed}\right), \\ $$$$\:{it}\:{also}\:{can}\:{be}\:{S},\:{which}\:{will}\:{form}\:{S}\:{if}\:{we}\:{join}\:{them}, \\ $$$${order}\:{of}\:{operation}\:{does}\:{not}\:{matter} \\ $$$$\:\left(\left\{{a},{b},{c},{d}\right\},\left\{{d},{e},{f}\right\}\right)\:{is}\:{the}\:{same}\:{as} \\ $$$$\:\left(\left\{{d},{e},{f}\right\},\left\{{a},{b},{c},{d}\right\}\right) \\ $$$$\:{how}\:{many}\:{ways}\:{can}\:{we}\:{choose}? \\ $$$$\: \\ $$$$ \\ $$

Question Number 190347    Answers: 1   Comments: 0

how is solution lim_(x→sinπ ) ((sin(π/2))/(sinx))=?

$${how}\:{is}\:{solution} \\ $$$$\underset{{x}\rightarrow\mathrm{sin}\pi\:} {\mathrm{lim}}\frac{\mathrm{sin}\frac{\pi}{\mathrm{2}}}{\mathrm{sin}{x}}=? \\ $$

Question Number 190260    Answers: 1   Comments: 0

f : [1, 3] →R , f(x) = (1/x) A(1, 1) B(1, (1/3)) B′(b, (1/b)) , b ≥ 1 Find i. equation of line AB′ ii. equation of tangent T ′ to C_f at point with x = ((1 + b)/2) iii. Study relative positions of L_(AB ′) , T ′ to C_f

$${f}\::\:\left[\mathrm{1},\:\mathrm{3}\right]\:\rightarrow\mathbb{R}\:,\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${A}\left(\mathrm{1},\:\mathrm{1}\right) \\ $$$${B}\left(\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${B}'\left({b},\:\frac{\mathrm{1}}{{b}}\right)\:,\:{b}\:\geqslant\:\mathrm{1} \\ $$$${Find} \\ $$$${i}.\:{equation}\:{of}\:{line}\:{AB}' \\ $$$${ii}.\:{equation}\:{of}\:{tangent}\:{T}\:'\:{to}\:{C}_{{f}} \:{at}\:{point} \\ $$$${with}\:{x}\:=\:\frac{\mathrm{1}\:+\:{b}}{\mathrm{2}} \\ $$$${iii}.\:{Study}\:{relative}\:{positions}\:{of}\:{L}_{{AB}\:'} \:,\:{T}\:'\:{to}\:{C}_{{f}} \\ $$

Question Number 189614    Answers: 1   Comments: 0

Question Number 189049    Answers: 1   Comments: 2

Question Number 189021    Answers: 2   Comments: 4

How many non−similar triangles have integer angles in °?

$${How}\:{many}\:{non}−{similar}\:{triangles} \\ $$$${have}\:{integer}\:{angles}\:{in}\:°? \\ $$

Question Number 188551    Answers: 1   Comments: 0

you randomly select a 5 digit number. what′s the probability that this number has exactly 3 different digits?

$${you}\:{randomly}\:{select}\:{a}\:\mathrm{5}\:{digit}\:{number}. \\ $$$${what}'{s}\:{the}\:{probability}\:{that}\:{this}\:{number} \\ $$$${has}\:{exactly}\:\mathrm{3}\:{different}\:{digits}? \\ $$

Question Number 188362    Answers: 2   Comments: 0

find the number of 5 digit natural numbers with strictly ascending digits whose sum is 20. example: 12458 is such a number

$${find}\:{the}\:{number}\:{of}\:\mathrm{5}\:{digit}\:{natural} \\ $$$${numbers}\:{with}\:{strictly}\:{ascending}\: \\ $$$${digits}\:{whose}\:{sum}\:{is}\:\mathrm{20}. \\ $$$${example}:\:\mathrm{12458}\:{is}\:{such}\:{a}\:{number} \\ $$

Question Number 188301    Answers: 1   Comments: 4

Find the number of triangles with integer side lengths and perimeter p.

$${Find}\:{the}\:{number}\:{of}\:{triangles}\:{with} \\ $$$${integer}\:{side}\:{lengths}\:{and}\:{perimeter}\:{p}. \\ $$

Question Number 187948    Answers: 1   Comments: 0

Given a set H={1,2,3,...,300. We will a create a subset of H consisting of three elements. If the sum of the three elements is divisible by 3 then the number of subsets that canbe made is x. Find the remainder if x is divided by 100000

$$ \\ $$$$\mathrm{Given}\:\mathrm{a}\:\mathrm{set}\:\mathrm{H}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{300}.\:\mathrm{We}\:\mathrm{will}\:\mathrm{a}\right. \\ $$$$\mathrm{cre}{a}\mathrm{te}\:\mathrm{a}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{H}\:\mathrm{consisting}\:\mathrm{of}\: \\ $$$$\mathrm{thre}{e}\:\mathrm{elements}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{thr}{e}\mathrm{e}\:\mathrm{elements}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\: \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{subsets}\:\mathrm{that}\: \\ $$$$\mathrm{canbe}\:\mathrm{made}\:\mathrm{is}\:\mathrm{x}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{remaind}{e}\mathrm{r}\:\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{100000} \\ $$

Question Number 185659    Answers: 1   Comments: 1

prove for r, n ∈ N Σ_(k=r) ^n ((k),(r) ) = (((n+1)),((r+1)) ) (Hockey−stick identity)

$${prove}\:{for}\:{r},\:{n}\:\in\:\mathbb{N} \\ $$$$\underset{{k}={r}} {\overset{{n}} {\sum}}\begin{pmatrix}{{k}}\\{{r}}\end{pmatrix}\:=\begin{pmatrix}{{n}+\mathrm{1}}\\{{r}+\mathrm{1}}\end{pmatrix} \\ $$$$\left({Hockey}−{stick}\:{identity}\right) \\ $$

Question Number 185642    Answers: 1   Comments: 1

Question Number 185350    Answers: 0   Comments: 1

C_4 ^4 +C_4 ^5 +C_4 ^6 +...+C_4 ^(26) =?

$$\:\:\:{C}_{\mathrm{4}} ^{\mathrm{4}} +{C}_{\mathrm{4}} ^{\mathrm{5}} +{C}_{\mathrm{4}} ^{\mathrm{6}} +...+{C}_{\mathrm{4}} ^{\mathrm{26}} \:=? \\ $$

Question Number 182793    Answers: 0   Comments: 0

Suppose now that Allie is actually 70 years old, and that her life expectancy (if cured) is 12 years rather than 20 . Which procedure now has the greather expected value ? What if her life expectancy is 8 years?

$$\:{Suppose}\:{now}\:{that}\:{Allie}\:{is}\:{actually} \\ $$$$\mathrm{70}\:{years}\:{old},\:{and}\:{that}\:{her}\:{life}\:{expectancy} \\ $$$$\left({if}\:{cured}\right)\:{is}\:\mathrm{12}\:{years}\:{rather}\:{than} \\ $$$$\mathrm{20}\:.\:{Which}\:{procedure}\:{now}\:{has}\:{the} \\ $$$${greather}\:{expected}\:{value}\:?\:{What}\:{if}\:{her} \\ $$$${life}\:{expectancy}\:{is}\:\mathrm{8}\:{years}? \\ $$

Question Number 182695    Answers: 1   Comments: 2

If two events A and B are such that P(A^c )=0.3 ; P(B)=0.4 and P(A∩B^c )= 0.5 then P((B/(A∪B^c )))=? (A) 0.20 (B) 0.25 (C) 0.30 (D) 0.35

$$\:\:\mathrm{If}\:\mathrm{two}\:\mathrm{events}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{such}\: \\ $$$$\:\:\mathrm{that}\:\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \right)=\mathrm{0}.\mathrm{3}\:;\:\mathrm{P}\left(\mathrm{B}\right)=\mathrm{0}.\mathrm{4}\:\mathrm{and} \\ $$$$\:\:\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}^{\mathrm{c}} \right)=\:\mathrm{0}.\mathrm{5}\:\mathrm{then}\:\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}\cup\mathrm{B}^{\mathrm{c}} }\right)=? \\ $$$$\:\left(\mathrm{A}\right)\:\mathrm{0}.\mathrm{20}\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{0}.\mathrm{25}\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{0}.\mathrm{30}\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{0}.\mathrm{35} \\ $$$$\:\: \\ $$

Question Number 181971    Answers: 1   Comments: 0

How many words can be formed from different letters of the “Your answer is wrong” with not repeating? So that they shouldn′t start with ′o′ neither ′w′ and shouldn′t end with ′w′, and should be′r′ & ′s′ adjacents. Oya...n, Wen...y, Iog...w , Yourws...e : are invalid Enrsow...g : is valid Q.180162

$${How}\:{many}\:{words}\:{can}\:{be}\:{formed}\:{from}\:{different} \\ $$$${letters}\:{of}\:{the}\:``{Your}\:{answer}\:{is}\:{wrong}''\:{with}\:{not} \\ $$$${repeating}?\:{So}\:{that}\:{they}\:{shouldn}'{t}\:{start}\:{with}\:'{o}'\: \\ $$$$\:{neither}\:'{w}'\:{and}\:{shouldn}'{t}\:{end}\:{with}\:'{w}',\:{and} \\ $$$$\:{should}\:{be}'{r}'\:\&\:'{s}'\:{adjacents}. \\ $$$$ \\ $$$$\:\cancel{{O}ya}...{n},\:\cancel{{W}en}...{y},\:{Iog}...\cancel{{w}}\:,\:{You}\cancel{{r}w}\cancel{{s}}...{e}\:\::\:{are}\:{invalid} \\ $$$$\:{Enrsow}...{g}\::\:{is}\:{valid} \\ $$$${Q}.\mathrm{180162} \\ $$

Question Number 181939    Answers: 2   Comments: 0

If 10 different balls are to be placed in 4 boxes at random , then the probability that two of these boxes contain exactly 2 and 3 balls

$${If}\:\mathrm{10}\:{different}\:{balls}\:{are}\:{to}\:{be}\:{placed} \\ $$$${in}\:\mathrm{4}\:{boxes}\:{at}\:{random}\:,\:{then}\:{the}\:{probability} \\ $$$${that}\:{two}\:{of}\:{these}\:{boxes}\:{contain} \\ $$$${exactly}\:\mathrm{2}\:{and}\:\mathrm{3}\:{balls}\: \\ $$

Question Number 181251    Answers: 1   Comments: 1

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com