Question and Answers Forum

All Questions   Topic List

Permutation and CombinationQuestion and Answers: Page 20

Question Number 54740    Answers: 3   Comments: 0

Prove that 1. ((n),(r) ) = (((n−1)),(( r)) ) + (((n−1)),(( r−1)) ) 2. ((n),(r) ) + ((( n)),((r−1)) ) = (((n+1)),(( r)) ) 3. ((n),(0) )+ ((n),(1) )+ ((n),(2) )+..+ ((n),(n) )=2^n

$${Prove}\:{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\:+\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:{r}−\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{2}.\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:+\begin{pmatrix}{\:\:\:{n}}\\{{r}−\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix}\: \\ $$$$\mathrm{3}.\:\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}+..+\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}=\mathrm{2}^{{n}} \\ $$

Question Number 54698    Answers: 2   Comments: 0

How many words with at least 2 letters can be formed using the letters from TINKUTARA?

$${How}\:{many}\:{words}\:{with}\:{at}\:{least}\:\mathrm{2}\:{letters} \\ $$$${can}\:{be}\:{formed}\:{using}\:{the}\:{letters}\:{from} \\ $$$${TINKUTARA}? \\ $$

Question Number 54646    Answers: 2   Comments: 0

Such That a. _(n+1) C_r =(((n+1). _n C_r )/((n−r+1))) b. _n C_0 +_n C_2 +_n C_(4...) =_n C_1 +_n C_3 +_n C_(5...) =2^(n−1)

$$\mathrm{Such}\:\mathrm{That} \\ $$$$\mathrm{a}.\:_{{n}+\mathrm{1}} {C}_{{r}} =\frac{\left({n}+\mathrm{1}\right).\:_{{n}} {C}_{{r}} }{\left({n}−{r}+\mathrm{1}\right)} \\ $$$$\mathrm{b}.\:_{{n}} {C}_{\mathrm{0}} +_{{n}} {C}_{\mathrm{2}} +_{{n}} {C}_{\mathrm{4}...} =_{{n}} {C}_{\mathrm{1}} +_{{n}} {C}_{\mathrm{3}} +_{{n}} {C}_{\mathrm{5}...} =\mathrm{2}^{{n}−\mathrm{1}} \\ $$$$ \\ $$

Question Number 54286    Answers: 2   Comments: 2

Question Number 53043    Answers: 2   Comments: 1

Question Number 52381    Answers: 2   Comments: 0

If all the words with or without meaning are written using the letters of the word QUEEN and are arranged as in English dictionary.What is the position of the word QUEEN? a)44th b)45th c)46th d)47th

$${If}\:{all}\:{the}\:{words}\:{with}\:{or}\:{without} \\ $$$${meaning}\:{are}\:{written}\:{using}\:{the} \\ $$$${letters}\:{of}\:{the}\:{word}\:{QUEEN}\:{and} \\ $$$${are}\:{arranged}\:{as}\:{in}\:{English} \\ $$$${dictionary}.{What}\:{is}\:{the}\:{position} \\ $$$${of}\:{the}\:{word}\:{QUEEN}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{4}\left.\mathrm{4}{th}\:{b}\right)\mathrm{45}{th}\:{c}\right)\mathrm{46}{th}\:{d}\right)\mathrm{47}{th} \\ $$

Question Number 52379    Answers: 1   Comments: 0

The sum of the digits in the unit place of all four digit numbers formed using the numbers 3 4 5 andL 6 without repetition is a)432 b)108 c)36 d)18

$${The}\:{sum}\:{of}\:{the}\:{digits}\:{in}\:{the}\:{unit} \\ $$$${place}\:{of}\:{all}\:{four}\:{digit}\:{numbers} \\ $$$${formed}\:{using}\:{the}\:{numbers}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:{and}\mathscr{L} \\ $$$$\mathrm{6}\:{without}\:{repetition}\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{4}\left.\mathrm{32}\:{b}\right)\mathrm{108}\:{c}\right)\mathrm{36}\:{d}\right)\mathrm{18} \\ $$

Question Number 52278    Answers: 2   Comments: 0

8 digit numbers are formed using 1 1 2 2 2 3 4 4. The number of such numbers in which the odd digits do not occupy odd places is a)160 b)120 c)60 d)48

$$\mathrm{8}\:{digit}\:{numbers}\:{are}\:{formed}\:{using} \\ $$$$\mathrm{1}\:\mathrm{1}\:\mathrm{2}\:\mathrm{2}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{4}.\:{The}\:{number}\:{of}\:{such} \\ $$$${numbers}\:{in}\:{which}\:{the}\:{odd}\:{digits} \\ $$$${do}\:{not}\:{occupy}\:{odd}\:{places}\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\mathrm{60}\:{b}\right)\mathrm{120}\:{c}\right)\mathrm{60}\:{d}\right)\mathrm{48} \\ $$

Question Number 52276    Answers: 1   Comments: 0

An 8 digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. The number of ways in which this can be done is? a)72(7i) b)18(7i) c)40(7i) d)36(7i) please I mean factorial by i.The part of my screen where the factorial symbol is isnt functioning.Thanks

$${An}\:\mathrm{8}\:{digit}\:{number}\:{divisible}\:{by}\:\mathrm{9}\:{is} \\ $$$${to}\:{be}\:{formed}\:{using}\:{digits}\:{from} \\ $$$$\mathrm{0}\:{to}\:\mathrm{9}\:{without}\:{repeating}\:{the}\:{digits}. \\ $$$${The}\:{number}\:{of}\:{ways}\:{in}\:{which}\:{this} \\ $$$${can}\:{be}\:{done}\:{is}? \\ $$$$\left.{a}\left.\right)\left.\mathrm{7}\left.\mathrm{2}\left(\mathrm{7}{i}\right)\:{b}\right)\mathrm{18}\left(\mathrm{7}{i}\right)\:{c}\right)\mathrm{40}\left(\mathrm{7}{i}\right)\:{d}\right)\mathrm{36}\left(\mathrm{7}{i}\right) \\ $$$$ \\ $$$${please}\:{I}\:{mean}\:\boldsymbol{{factorial}}\:{by}\:{i}.{The} \\ $$$${part}\:{of}\:{my}\:{screen}\:{where}\:{the}\:{factorial} \\ $$$${symbol}\:{is}\:{isnt}\:{functioning}.{Thanks} \\ $$

Question Number 51779    Answers: 0   Comments: 3

Q= In how many ways 8 students can be divided into two equal groups? Ans= ((8!)/(2!×(4!)^2 )) here why two factorial is divided? we do not do the same incase of distributing 52 cards equally among 4 persons. pls explain...

$${Q}=\:\:{In}\:{how}\:{many}\:{ways}\:\mathrm{8}\:{students}\:{can}\:{be}\:{divided}\:{into}\:{two}\:{equal}\:{groups}? \\ $$$$ \\ $$$${Ans}=\:\:\:\:\frac{\mathrm{8}!}{\mathrm{2}!×\left(\mathrm{4}!\right)^{\mathrm{2}} }\:\:\: \\ $$$$ \\ $$$${here}\:{why}\:{two}\:{factorial}\:{is}\:{divided}? \\ $$$${we}\:{do}\:{not}\:{do}\:{the}\:{same}\:{incase}\:{of}\:{distributing}\:\mathrm{52}\:{cards}\:{equally}\:{among}\:\mathrm{4}\:{persons}. \\ $$$$ \\ $$$${pls}\:{explain}... \\ $$

Question Number 51465    Answers: 2   Comments: 4

Question Number 51287    Answers: 1   Comments: 0

Question Number 51286    Answers: 1   Comments: 0

Question Number 50724    Answers: 1   Comments: 0

a man goes in for an examination in which there are 4 papers which maxmum of 10 marks for each paper the no of ways of getting 20 marks on the whole is ans:891

$$\mathrm{a}\:\mathrm{man}\:\mathrm{goes}\:\mathrm{in}\:\mathrm{for}\:\mathrm{an}\:\mathrm{examination}\:\mathrm{in} \\ $$$$\mathrm{which}\:\mathrm{there}\:\mathrm{are}\:\mathrm{4}\:\mathrm{papers}\:\mathrm{which}\:\mathrm{maxmum} \\ $$$$\mathrm{of}\:\mathrm{10}\:\mathrm{marks}\:\mathrm{for}\:\mathrm{each}\:\mathrm{paper}\:\mathrm{the}\:\mathrm{no}\:\mathrm{of}\:\mathrm{ways} \\ $$$$\mathrm{of}\:\mathrm{getting}\:\mathrm{20}\:\mathrm{marks}\:\mathrm{on}\:\mathrm{the}\:\mathrm{whole}\:\mathrm{is} \\ $$$$\mathrm{ans}:\mathrm{891} \\ $$

Question Number 50258    Answers: 1   Comments: 0

A delegation of 4 students is to be selected from a total of 12 students. In how many ways can the delegation be selected if: 1) 2 particular students wish to be included together only in the delegation? 2) 2 particular students refuse to be together and 2 other particular students wish to be together only in the delegation?

$${A}\:{delegation}\:{of}\:\mathrm{4}\:{students}\:{is}\:{to}\:{be} \\ $$$${selected}\:{from}\:{a}\:{total}\:{of}\:\mathrm{12}\:{students}. \\ $$$${In}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{delegation} \\ $$$${be}\:{selected}\:{if}: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{2}\:{particular}\:{students}\:{wish}\:{to}\:{be}\: \\ $$$${included}\:{together}\:{only}\:{in}\:{the}\:{delegation}? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{2}\:{particular}\:{students}\:{refuse}\:{to}\:{be}\: \\ $$$${together}\:{and}\:\mathrm{2}\:{other}\:{particular}\:{students} \\ $$$${wish}\:{to}\:{be}\:{together}\:{only}\:{in}\:{the}\:{delegation}? \\ $$

Question Number 50008    Answers: 1   Comments: 4

5−digit number divisible by 3 formed using 0,1,2,3,4,5 without repetition. Total number of such no.s is ?

$$\mathrm{5}−{digit}\:{number}\:{divisible}\:{by}\:\mathrm{3}\:{formed} \\ $$$${using}\:\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\:{without}\:{repetition}. \\ $$$${Total}\:{number}\:{of}\:{such}\:{no}.{s}\:{is}\:? \\ $$

Question Number 49982    Answers: 1   Comments: 0

If (n_P_r /n_C_r ) −1=5, find the value of r

$$\mathrm{If}\:\frac{\mathrm{n}_{\mathrm{P}_{\mathrm{r}} } }{\mathrm{n}_{\mathrm{C}_{\mathrm{r}} } }\:−\mathrm{1}=\mathrm{5},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{r} \\ $$

Question Number 49482    Answers: 1   Comments: 14

Find number of 4−letter words which can be formed using the letters of the word ′ALLAHABAD′ such that: NO repetition of letter and word should start “either” from H “or” ends with D ?

$${Find}\:{number}\:{of}\:\mathrm{4}−{letter}\:{words}\:{which} \\ $$$${can}\:{be}\:{formed}\:{using}\:{the}\:{letters}\:{of}\: \\ $$$${the}\:{word}\:'{ALLAHABAD}'\:{such}\:{that}: \\ $$$${NO}\:{repetition}\:{of}\:{letter}\:{and}\:{word}\:{should} \\ $$$${start}\:``{either}''\:{from}\:{H}\:``{or}''\:{ends}\:{with}\:{D}\:? \\ $$

Question Number 49408    Answers: 1   Comments: 3

Find the number of all such 7−digit no. which satisfy conditions: 1) divisible by 3 2) repetition allowed 3) zero is not used.

$${Find}\:{the}\:{number}\:{of}\:{all}\:{such}\:\mathrm{7}−{digit} \\ $$$${no}.\:{which}\:{satisfy}\:{conditions}: \\ $$$$\left.\mathrm{1}\right)\:{divisible}\:{by}\:\mathrm{3} \\ $$$$\left.\mathrm{2}\right)\:{repetition}\:{allowed} \\ $$$$\left.\mathrm{3}\right)\:{zero}\:{is}\:{not}\:{used}. \\ $$

Question Number 49101    Answers: 0   Comments: 0

Question Number 49100    Answers: 0   Comments: 0

Question Number 49099    Answers: 0   Comments: 0

Question Number 49037    Answers: 0   Comments: 0

Question Number 49036    Answers: 1   Comments: 4

Question Number 49034    Answers: 1   Comments: 0

Question Number 48341    Answers: 0   Comments: 0

  Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com