Question and Answers Forum

All Questions   Topic List

Permutation and CombinationQuestion and Answers: Page 1

Question Number 222192    Answers: 1   Comments: 0

there are 32 students in a class. for each competition in a sport event in the school each class can send a team with three students. if no two students may be in the same team for more than one time, in how many different competitions can this class participate?

$${there}\:{are}\:\mathrm{32}\:{students}\:{in}\:{a}\:{class}.\:{for} \\ $$$${each}\:{competition}\:{in}\:{a}\:{sport}\:{event}\: \\ $$$${in}\:{the}\:{school}\:{each}\:{class}\:{can}\:{send} \\ $$$${a}\:{team}\:{with}\:{three}\:{students}.\:{if}\:{no} \\ $$$${two}\:{students}\:{may}\:{be}\:{in}\:{the}\:{same} \\ $$$${team}\:{for}\:{more}\:{than}\:{one}\:{time},\:{in} \\ $$$${how}\:{many}\:{different}\:{competitions}\: \\ $$$${can}\:{this}\:{class}\:{participate}? \\ $$

Question Number 222105    Answers: 1   Comments: 1

Question Number 221661    Answers: 1   Comments: 1

Question Number 220878    Answers: 1   Comments: 0

Question Number 220877    Answers: 4   Comments: 0

Question Number 220876    Answers: 3   Comments: 0

Question Number 220874    Answers: 1   Comments: 2

Question Number 220873    Answers: 1   Comments: 0

Question Number 220872    Answers: 1   Comments: 0

Question Number 220744    Answers: 1   Comments: 0

Question Number 220743    Answers: 1   Comments: 0

Question Number 220741    Answers: 1   Comments: 0

Question Number 220740    Answers: 1   Comments: 0

Question Number 220739    Answers: 1   Comments: 0

Question Number 219936    Answers: 1   Comments: 0

Prove that:∀n∈IN ∫^( n+1) _( n) ln(t)dt≤ln(n+(1/2))

$$\mathrm{Prove}\:\mathrm{that}:\forall\mathrm{n}\in\mathrm{IN} \\ $$$$\underset{\:\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}\leqslant\mathrm{ln}\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Question Number 219527    Answers: 2   Comments: 2

Question Number 218578    Answers: 2   Comments: 0

10 couples are invited to a dinner. after the dinner they form pairs to dance. in how many ways can they do this, 1) generally 2) a man should dance with a woman 3) as 2), but two special couples should not dance with each other 4) a man should dance with a woman, but not with his own wife 5) as 4), but two special couples should not dance with each other

$$\mathrm{10}\:{couples}\:{are}\:{invited}\:{to}\:{a}\:{dinner}. \\ $$$${after}\:{the}\:{dinner}\:{they}\:{form}\:{pairs}\: \\ $$$${to}\:{dance}.\:{in}\:{how}\:{many}\:{ways}\:{can}\:{they} \\ $$$${do}\:{this}, \\ $$$$\left.\mathrm{1}\right)\:{generally} \\ $$$$\left.\mathrm{2}\right)\:{a}\:{man}\:{should}\:{dance}\:{with}\:{a}\:{woman} \\ $$$$\left.\mathrm{3}\left.\right)\:{as}\:\mathrm{2}\right),\:{but}\:{two}\:{special}\:{couples} \\ $$$$\:\:\:\:\:{should}\:{not}\:{dance}\:{with}\:{each}\:{other} \\ $$$$\left.\mathrm{4}\right)\:{a}\:{man}\:{should}\:{dance}\:{with}\:{a}\:{woman}, \\ $$$$\:\:\:\:\:{but}\:{not}\:{with}\:{his}\:{own}\:{wife} \\ $$$$\left.\mathrm{5}\left.\right)\:{as}\:\mathrm{4}\right),\:{but}\:{two}\:{special}\:{couples} \\ $$$$\:\:\:\:\:{should}\:{not}\:{dance}\:{with}\:{each}\:{other} \\ $$

Question Number 218445    Answers: 3   Comments: 0

there are 100 students in a school. it is found out that each student should select at least 4 courses, so that no two students have the same selection. how many different courses does the school offer?

$${there}\:{are}\:\mathrm{100}\:{students}\:{in}\:{a}\:{school}. \\ $$$${it}\:{is}\:{found}\:{out}\:{that}\:{each}\:{student}\: \\ $$$${should}\:{select}\:{at}\:{least}\:\mathrm{4}\:{courses},\:{so}\: \\ $$$${that}\:{no}\:{two}\:{students}\:{have}\:{the}\:{same}\: \\ $$$${selection}.\: \\ $$$${how}\:{many}\:{different}\:{courses}\:{does}\: \\ $$$${the}\:{school}\:{offer}? \\ $$

Question Number 218310    Answers: 2   Comments: 1

10 couples are invited to a dinner and should be seated at a round table. in how many ways can the host do this, 1) generally. 2) if the husband and the wife of each couple should sit together. 3) if no two men should sit next to each other. 4) as 3), but two speicial couples should not sit next to each other. it means that the husband from couple 1 may not sit next to the wife from couple 2 and the husband from couple 2 may not sit next to the wife from couple 1. but certainly the husbands of both couples may sit next to their own wifes.

$$\mathrm{10}\:{couples}\:{are}\:{invited}\:{to}\:{a}\:{dinner} \\ $$$${and}\:{should}\:{be}\:{seated}\:{at}\:{a}\:{round}\:{table}. \\ $$$${in}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{host}\:{do} \\ $$$${this}, \\ $$$$\left.\mathrm{1}\right)\:{generally}. \\ $$$$\left.\mathrm{2}\right)\:{if}\:{the}\:{husband}\:{and}\:{the}\:{wife}\:{of} \\ $$$$\:\:\:\:\:{each}\:{couple}\:{should}\:{sit}\:{together}. \\ $$$$\left.\mathrm{3}\right)\:{if}\:{no}\:{two}\:{men}\:{should}\:{sit}\:{next} \\ $$$$\:\:\:\:\:{to}\:{each}\:{other}. \\ $$$$\left.\mathrm{4}\left.\right)\:{as}\:\mathrm{3}\right),\:{but}\:{two}\:{speicial}\:{couples}\: \\ $$$$\:\:\:\:\:{should}\:{not}\:{sit}\:{next}\:{to}\:{each}\:{other}. \\ $$$$\:\:\:\:\underline{\:{it}\:{means}\:}{that}\:{the}\:{husband}\:{from}\: \\ $$$$\:\:\:\:\:{couple}\:\mathrm{1}\:{may}\:{not}\:{sit}\:{next}\:{to}\:{the} \\ $$$$\:\:\:\:\:{wife}\:{from}\:{couple}\:\mathrm{2}\:{and}\:{the} \\ $$$$\:\:\:\:\:\:{husband}\:{from}\:{couple}\:\mathrm{2}\:{may}\:{not} \\ $$$$\:\:\:\:\:\:{sit}\:{next}\:{to}\:{the}\:{wife}\:{from}\:{couple}\:\mathrm{1}. \\ $$$$\:\:\:\:\:\:{but}\:{certainly}\:{the}\:{husbands}\:{of} \\ $$$$\:\:\:\:\:\:{both}\:{couples}\:{may}\:{sit}\:{next}\:{to}\:{their} \\ $$$$\:\:\:\:\:\:{own}\:{wifes}. \\ $$

Question Number 218169    Answers: 0   Comments: 0

P(5,6)=((15!)/((15−6))) = ((15!)/(9!)) =((15×14×131×2×11×10×9×8×7×6×5×4×3×2×1)/(9×8×7×6×5×4×3×2×)) =15×14×13×12×11×10 =3,603,600

$${P}\left(\mathrm{5},\mathrm{6}\right)=\frac{\mathrm{15}!}{\left(\mathrm{15}−\mathrm{6}\right)}\:=\:\frac{\mathrm{15}!}{\mathrm{9}!}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{15}×\mathrm{14}×\mathrm{131}×\mathrm{2}×\mathrm{11}×\mathrm{10}×\mathrm{9}×\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{9}×\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{15}×\mathrm{14}×\mathrm{13}×\mathrm{12}×\mathrm{11}×\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3},\mathrm{603},\mathrm{600} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 218129    Answers: 2   Comments: 0

how many different words can be formed from the word MATHEMATICS? note: here a word should have at least two letters, but mustn′t have a meaning.

$${how}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{from}\:{the}\:{word}\: \\ $$$$\boldsymbol{\mathrm{MATHEMATICS}}? \\ $$$${note}:\:\:{here}\:{a}\:{word}\:{should}\:{have}\:{at}\: \\ $$$${least}\:{two}\:{letters},\:{but}\:{mustn}'{t}\:{have}\:{a} \\ $$$${meaning}. \\ $$

Question Number 217402    Answers: 3   Comments: 0

Question Number 214923    Answers: 0   Comments: 0

Question Number 213796    Answers: 4   Comments: 0

Question Number 212686    Answers: 4   Comments: 4

in how many ways can a teacher divide his 10 studens into 4 groups such that each group has at least 2 students?

$${in}\:{how}\:{many}\:{ways}\:{can}\:{a}\:{teacher} \\ $$$${divide}\:{his}\:\mathrm{10}\:{studens}\:{into}\:\mathrm{4}\:{groups} \\ $$$${such}\:{that}\:{each}\:{group}\:{has}\:{at}\:{least}\:\mathrm{2}\: \\ $$$${students}? \\ $$

Question Number 210290    Answers: 1   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com