Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 161528 by Rasheed.Sindhi last updated on 19/Dec/21

PROVE that the numbers of types  4k+2 & 4k+3 are NOT perfect □s.

$$\mathrm{PROVE}\:\mathrm{that}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{types} \\ $$$$\mathrm{4k}+\mathrm{2}\:\&\:\mathrm{4k}+\mathrm{3}\:\mathrm{are}\:\mathrm{NOT}\:\mathrm{perfect}\:\Box\mathrm{s}. \\ $$

Answered by mr W last updated on 19/Dec/21

(1) type 4k+3  assume it can be a perfect square.  that means there exists such an odd  number 2n+1, such that  4k+3=(2n+1)^2   ⇒4k+3=4n^2 +4n+1  ⇒(1/2)=n^2 +n−k=integer  this is a contradiction, therefore  4k+3 can not be a perfect square.    (2) type 4k+2  similarly

$$\left(\mathrm{1}\right)\:{type}\:\mathrm{4}{k}+\mathrm{3} \\ $$$${assume}\:{it}\:{can}\:{be}\:{a}\:{perfect}\:{square}. \\ $$$${that}\:{means}\:{there}\:{exists}\:{such}\:{an}\:{odd} \\ $$$${number}\:\mathrm{2}{n}+\mathrm{1},\:{such}\:{that} \\ $$$$\mathrm{4}{k}+\mathrm{3}=\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{k}+\mathrm{3}=\mathrm{4}{n}^{\mathrm{2}} +\mathrm{4}{n}+\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}={n}^{\mathrm{2}} +{n}−{k}={integer} \\ $$$${this}\:{is}\:{a}\:{contradiction},\:{therefore} \\ $$$$\mathrm{4}{k}+\mathrm{3}\:{can}\:{not}\:{be}\:{a}\:{perfect}\:{square}. \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{type}\:\mathrm{4}{k}+\mathrm{2} \\ $$$${similarly} \\ $$

Commented by Rasheed.Sindhi last updated on 19/Dec/21

Nice sir! ThanX!

$${Nice}\:\boldsymbol{{sir}}!\:\mathcal{T}{han}\mathcal{X}! \\ $$

Commented by Rasheed.Sindhi last updated on 19/Dec/21

For type 4k+2     4k+2=2(2k+1)  ∵ 2 occurs once only      But in perfect square any prime      factor occurs in even number times  ∴ 4k+2 is not a perfect square.

$${For}\:{type}\:\mathrm{4}{k}+\mathrm{2} \\ $$$$\:\:\:\mathrm{4}{k}+\mathrm{2}=\mathrm{2}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$\because\:\mathrm{2}\:{occurs}\:{once}\:{only} \\ $$$$\:\:\:\:{But}\:{in}\:{perfect}\:{square}\:{any}\:{prime}\: \\ $$$$\:\:\:{factor}\:{occurs}\:{in}\:{even}\:{number}\:{times} \\ $$$$\therefore\:\mathrm{4}{k}+\mathrm{2}\:{is}\:{not}\:{a}\:{perfect}\:{square}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com