Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 33834 by uddipan last updated on 25/Apr/18

P(x)=x^n +a_(n−1) x^(n−1) +.... a_1 x+a_0    be a polynomial with all the real roots,  prove that         (n−1)a_(n−1) ^2  ≥ 2na_(n−2)   .

$${P}\left({x}\right)={x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +....\:{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \:\:\:{be}\:{a}\:{polynomial}\:{with}\:{all}\:{the}\:{real}\:{roots}, \\ $$$${prove}\:{that}\:\:\:\:\:\:\:\:\:\left({n}−\mathrm{1}\right){a}_{{n}−\mathrm{1}} ^{\mathrm{2}} \:\geqslant\:\mathrm{2}{na}_{{n}−\mathrm{2}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com