Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 127684 by liberty last updated on 01/Jan/21

P = cos ((π/(15)))cos (((2π)/(15)))cos (((3π)/(15)))cos (((4π)/(15)))cos (((5π)/(15)))cos (((6π)/(15)))cos (((7π)/(15)))  P=?

$$\mathrm{P}\:=\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{6}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{7}\pi}{\mathrm{15}}\right) \\ $$$$\mathrm{P}=?\: \\ $$

Answered by bramlexs22 last updated on 01/Jan/21

Commented by bobhans last updated on 01/Jan/21

nice ...happy new year...

$${nice}\:...{happy}\:{new}\:{year}... \\ $$

Commented by bramlexs22 last updated on 01/Jan/21

happy new year too

Commented by Apurv last updated on 01/Jan/21

  P = cos ((π/(15)))cos (((2π)/(15)))cos (((3π)/(15)))cos (((4π)/(15)))cos (((5π)/(15)))cos (((6π)/(15)))cos (((7π)/(15)))  P=

$$ \\ $$$$\mathrm{P}\:=\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{6}\pi}{\mathrm{15}}\right)\mathrm{cos}\:\left(\frac{\mathrm{7}\pi}{\mathrm{15}}\right) \\ $$$$\mathrm{P}= \\ $$

Answered by mindispower last updated on 01/Jan/21

cos(x)=((e^(ix) +e^(−ix) )/2)=(e^x /2)(1+e^(2ix) )  let p(x)=X^(15) −1=0  p(x)=0⇒X=e^(2((ikπ)/(15)))  ,k∈{0,.....,14}  P(x)=Π_(k=0) ^(14)  (X−e^(2((ikπ)/(15)))  ),P(−1)=−Π_(k=0) ^(14)  ^ (1+e^(i2((kπ)/(15  ))) )=−2  =Π_(k=0) ^(14) e^((ikπ)/(15)) (e^((iπk)/(15)) +e^(−((ikπ)/(15))) )=−2^(15) e^(((iπ)/(15))(15.7)) .Π_(k=0) ^(14) cos(((kπ)/(15)))  ⇒(1/2^(14) )=.−1Π_(k=1) ^7 cos(((kπ)/(15))).Π_(k=8) ^(14) cos(((kπ)/(15)))  k→15−k,in 2nd   ⇒(1/2^(14) )=−Π_(k=1) ^7 cos(((kπ)/(15))).Π_(k=1) ^7 cos(π−((kπ)/(15)))  (1/2^(14) )=(Π_1 ^7 cos(((kπ)/(15))))^2   ⇒Π_(k.1) ^7 cos(((kπ)/(15)))=+_− (1/2^7 ),∀k∈[1,7]∩N 0≤((kπ)/(15))≤(π/2)  cos(((kπ)/(15)))≥0⇒P=(1/(128))

$${cos}\left({x}\right)=\frac{{e}^{{ix}} +{e}^{−{ix}} }{\mathrm{2}}=\frac{{e}^{{x}} }{\mathrm{2}}\left(\mathrm{1}+{e}^{\mathrm{2}{ix}} \right) \\ $$$${let}\:{p}\left({x}\right)={X}^{\mathrm{15}} −\mathrm{1}=\mathrm{0} \\ $$$${p}\left({x}\right)=\mathrm{0}\Rightarrow{X}={e}^{\mathrm{2}\frac{{ik}\pi}{\mathrm{15}}} \:,{k}\in\left\{\mathrm{0},.....,\mathrm{14}\right\} \\ $$$${P}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{14}} {\prod}}\:\left({X}−{e}^{\mathrm{2}\frac{{ik}\pi}{\mathrm{15}}} \:\right),{P}\left(−\mathrm{1}\right)=−\underset{{k}=\mathrm{0}} {\overset{\mathrm{14}} {\prod}}\overset{} {\:}\left(\mathrm{1}+{e}^{{i}\mathrm{2}\frac{{k}\pi}{\mathrm{15}\:\:}} \right)=−\mathrm{2} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{14}} {\prod}}{e}^{\frac{{ik}\pi}{\mathrm{15}}} \left({e}^{\frac{{i}\pi{k}}{\mathrm{15}}} +{e}^{−\frac{{ik}\pi}{\mathrm{15}}} \right)=−\mathrm{2}^{\mathrm{15}} {e}^{\frac{{i}\pi}{\mathrm{15}}\left(\mathrm{15}.\mathrm{7}\right)} .\underset{{k}=\mathrm{0}} {\overset{\mathrm{14}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{15}}\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{14}} }=.−\mathrm{1}\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{15}}\right).\underset{{k}=\mathrm{8}} {\overset{\mathrm{14}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{15}}\right) \\ $$$${k}\rightarrow\mathrm{15}−{k},{in}\:\mathrm{2}{nd}\: \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{14}} }=−\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{15}}\right).\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\prod}}{cos}\left(\pi−\frac{{k}\pi}{\mathrm{15}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{14}} }=\left(\underset{\mathrm{1}} {\overset{\mathrm{7}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{15}}\right)\right)^{\mathrm{2}} \\ $$$$\Rightarrow\underset{{k}.\mathrm{1}} {\overset{\mathrm{7}} {\prod}}{cos}\left(\frac{{k}\pi}{\mathrm{15}}\right)=\underset{−} {+}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{7}} },\forall{k}\in\left[\mathrm{1},\mathrm{7}\right]\cap\mathbb{N}\:\mathrm{0}\leqslant\frac{{k}\pi}{\mathrm{15}}\leqslant\frac{\pi}{\mathrm{2}} \\ $$$${cos}\left(\frac{{k}\pi}{\mathrm{15}}\right)\geqslant\mathrm{0}\Rightarrow{P}=\frac{\mathrm{1}}{\mathrm{128}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com