Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 96

Question Number 56900    Answers: 1   Comments: 0

Question Number 56890    Answers: 0   Comments: 0

d^2 y/dx^2 =x^2 y=0

$${d}^{\mathrm{2}} {y}/{dx}^{\mathrm{2}} ={x}^{\mathrm{2}} {y}=\mathrm{0} \\ $$

Question Number 56854    Answers: 0   Comments: 1

There was a post sime time back about not being able to backup or restore. Can anyone send the requirdd information if you faced the same problem?

$$\mathrm{There}\:\mathrm{was}\:\mathrm{a}\:\mathrm{post}\:\mathrm{sime}\:\mathrm{time}\:\mathrm{back} \\ $$$$\mathrm{about}\:\mathrm{not}\:\mathrm{being}\:\mathrm{able}\:\mathrm{to}\:\mathrm{backup} \\ $$$$\mathrm{or}\:\mathrm{restore}.\:\mathrm{Can}\:\mathrm{anyone}\:\mathrm{send}\:\mathrm{the}\:\mathrm{requirdd} \\ $$$$\mathrm{information}\:\mathrm{if}\:\mathrm{you}\:\mathrm{faced}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{problem}? \\ $$

Question Number 56851    Answers: 0   Comments: 0

let: [u_n =(√u_(n−1) )+(√u_(n−2) ),u_0 =1,u_1 =1] ⇒ Σ_0 ^∞ ((1/u_n ))=?

$${let}:\:\left[\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}} =\sqrt{\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} }+\sqrt{\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}−\mathrm{2}} },\boldsymbol{\mathrm{u}}_{\mathrm{0}} =\mathrm{1},\boldsymbol{\mathrm{u}}_{\mathrm{1}} =\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\underset{\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}} }\right)=? \\ $$

Question Number 56847    Answers: 0   Comments: 2

d2y/dx2=x2y=0

$${d}\mathrm{2}{y}/{dx}\mathrm{2}={x}\mathrm{2}{y}=\mathrm{0} \\ $$

Question Number 56823    Answers: 1   Comments: 1

Question Number 56775    Answers: 0   Comments: 1

if x,y∍ℜ,show that ∣x+y∣=∣x∣+∣y∣ iff xy≥0

$${if}\:{x},{y}\backepsilon\Re,{show}\:{that}\:\mid{x}+{y}\mid=\mid{x}\mid+\mid{y}\mid\:{iff}\:{xy}\geqslant\mathrm{0} \\ $$

Question Number 56664    Answers: 0   Comments: 2

Question Number 56663    Answers: 0   Comments: 0

i think everybody are in deep thought...

$${i}\:{think}\:{everybody}\:{are}\:{in}\:{deep}\:{thought}... \\ $$

Question Number 56661    Answers: 0   Comments: 0

Question Number 56660    Answers: 0   Comments: 5

Question Number 56659    Answers: 0   Comments: 1

Question Number 56569    Answers: 0   Comments: 0

Question Number 56565    Answers: 0   Comments: 2

It is my kind request to those who post questions ...pls go through the details of answer...and give feed back...pls activate yourselves to pay your attention in the details of answer...do not become self satisfied by getting your desired results.. unfurl your mind and act in such away that we get a tip of iceberg of your satisfation.Tanmay

$${It}\:{is}\:{my}\:{kind}\:{request}\:{to}\:{those}\:{who}\:{post}\:{questions} \\ $$$$...{pls}\:{go}\:{through}\:{the}\:{details}\:{of}\:{answer}...{and}\:{give} \\ $$$${feed}\:{back}...{pls}\:{activate}\:{yourselves}\:{to}\:{pay}\:{your} \\ $$$${attention}\:{in}\:{the}\:{details}\:{of}\:{answer}...{do}\:{not}\:{become} \\ $$$${self}\:{satisfied}\:{by}\:{getting}\:{your}\:{desired}\:{results}.. \\ $$$${unfurl}\:{your}\:{mind}\:{and}\:{act}\:{in}\:{such}\:{away}\:{that} \\ $$$${we}\:{get}\:{a}\:{tip}\:{of}\:{iceberg}\:{of}\:{your}\:{satisfation}.{Tanmay} \\ $$

Question Number 56524    Answers: 0   Comments: 2

Question Number 56467    Answers: 1   Comments: 0

x^3 +ax^2 +bx+c=0 Transform to t^3 +k=0 .

$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${Transform}\:{to}\: \\ $$$$\:\:\:{t}^{\mathrm{3}} +{k}=\mathrm{0}\:. \\ $$

Question Number 56378    Answers: 0   Comments: 2

Question Number 56358    Answers: 0   Comments: 3

∫_0 ^∞ (cot^(−1) x)^2 dx

$$\int_{\mathrm{0}} ^{\infty} \left(\mathrm{cot}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} {dx} \\ $$$$ \\ $$

Question Number 56321    Answers: 2   Comments: 0

Solve for x and y x (√x) + y(√y) = 182 ..... (i) x (√y) + y(√x) = 183 ..... (ii)

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{x}}\:\:+\:\mathrm{y}\sqrt{\mathrm{y}}\:\:=\:\mathrm{182}\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{y}}\:\:+\:\mathrm{y}\sqrt{\mathrm{x}}\:\:=\:\mathrm{183}\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$

Question Number 56282    Answers: 0   Comments: 5

Question Number 56243    Answers: 1   Comments: 0

6/2×5 which one correct 6/2×5 6/2×5 =3×5 =6/10 =15 =0.6

$$\mathrm{6}/\mathrm{2}×\mathrm{5} \\ $$$$\:{which}\:{one}\:{correct} \\ $$$$\mathrm{6}/\mathrm{2}×\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}/\mathrm{2}×\mathrm{5} \\ $$$$=\mathrm{3}×\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{6}/\mathrm{10} \\ $$$$=\mathrm{15}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}.\mathrm{6} \\ $$

Question Number 56215    Answers: 4   Comments: 2

(√(x/(x−1)))+(√((x−1)/x))=2 find x

$$\sqrt{\frac{{x}}{{x}−\mathrm{1}}}+\sqrt{\frac{{x}−\mathrm{1}}{{x}}}=\mathrm{2} \\ $$$$ \\ $$$${find}\:{x} \\ $$

Question Number 56214    Answers: 3   Comments: 0

x^x =4 find x

$${x}^{{x}} =\mathrm{4} \\ $$$$ \\ $$$${find}\:{x} \\ $$

Question Number 56213    Answers: 1   Comments: 1

xsin x=5 find x

$${x}\mathrm{sin}\:{x}=\mathrm{5} \\ $$$$ \\ $$$${find}\:{x} \\ $$

Question Number 56205    Answers: 1   Comments: 0

find (or prove it can′t exist) a f:R→R diferentiable such that ∫_(a−δ) ^(a+δ) f(x)dx=0,∀a∈R,δ>0 (df/dx)=0,∀x∈R

$$\mathrm{find}\:\left(\mathrm{or}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{can}'\mathrm{t}\:\mathrm{exist}\right)\:\mathrm{a}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{diferentiable} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\underset{{a}−\delta} {\overset{{a}+\delta} {\int}}{f}\left({x}\right){dx}=\mathrm{0},\forall{a}\in\mathbb{R},\delta>\mathrm{0} \\ $$$$\frac{{df}}{{dx}}=\mathrm{0},\forall{x}\in\mathbb{R} \\ $$

Question Number 56190    Answers: 0   Comments: 0

There was a post some time back for failed import. Can u please resend the email? Email address to be used is info@tinkutara.com Thanks

$$\mathrm{There}\:\mathrm{was}\:\mathrm{a}\:\mathrm{post}\:\mathrm{some}\:\mathrm{time}\:\mathrm{back} \\ $$$$\mathrm{for}\:\mathrm{failed}\:\mathrm{import}.\:\mathrm{Can}\:\mathrm{u}\:\mathrm{please} \\ $$$$\mathrm{resend}\:\mathrm{the}\:\mathrm{email}?\:\mathrm{Email}\:\mathrm{address} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{used}\:\mathrm{is}\:\mathrm{info}@\mathrm{tinkutara}.\mathrm{com} \\ $$$$\mathrm{Thanks} \\ $$

  Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96      Pg 97      Pg 98      Pg 99      Pg 100   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com