Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 93

Question Number 57618    Answers: 1   Comments: 0

Question Number 57617    Answers: 3   Comments: 1

Question Number 57601    Answers: 2   Comments: 1

Question Number 57599    Answers: 2   Comments: 0

Question Number 57491    Answers: 1   Comments: 0

If R is a region enclosed by y = f(x), y = g(x), x = a, x = b, is it possible to have f(x) and g(x) such that the center of gravity (x^ , y^ ) is not inside R ?

$$\mathrm{If}\:{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{region}\:\mathrm{enclosed}\:\mathrm{by}\:{y}\:=\:{f}\left({x}\right),\:{y}\:=\:{g}\left({x}\right),\:{x}\:=\:{a},\:{x}\:=\:{b}, \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{have}\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right)\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{gravity}\:\left(\bar {{x}},\:\bar {{y}}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{inside}\:{R}\:? \\ $$

Question Number 57405    Answers: 1   Comments: 0

calculate lim_(x→0) ((1−cosx.cos(2x)....cos(nx))/x^2 ) with n integr natural not 0.

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−{cosx}.{cos}\left(\mathrm{2}{x}\right)....{cos}\left({nx}\right)}{{x}^{\mathrm{2}} } \\ $$$${with}\:{n}\:{integr}\:{natural}\:{not}\:\mathrm{0}. \\ $$

Question Number 57348    Answers: 1   Comments: 2

Question Number 57309    Answers: 0   Comments: 0

Question Number 57284    Answers: 1   Comments: 1

y is varies directly as the square of x and inversely as z. if x is inceased by 10% and z is decreased by 20%, find the percentage change in y.

$${y}\:{is}\:{varies}\:{directly}\:{as}\:{the}\:{square}\:{of}\:{x}\:{and} \\ $$$${inversely}\:{as}\:{z}. \\ $$$${if}\:{x}\:{is}\:{inceased}\:{by}\:\mathrm{10\%}\:{and}\:{z}\:\:{is}\: \\ $$$${decreased}\:{by}\:\mathrm{20\%},\:{find}\:{the}\:{percentage} \\ $$$${change}\:{in}\:{y}. \\ $$

Question Number 57184    Answers: 2   Comments: 1

Question Number 57075    Answers: 1   Comments: 5

Question Number 57074    Answers: 1   Comments: 0

Solve the system. ^x C_(y + 1) = 20, ^(x − 1) C_y = 10

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}. \\ $$$$\:\:\:\:\:\:\overset{\mathrm{x}} {\:}\mathrm{C}_{\mathrm{y}\:+\:\mathrm{1}} \:\:=\:\:\mathrm{20},\:\:\:\:\:\:\:\:\:\:\:\overset{\mathrm{x}\:−\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{y}} \:\:=\:\:\mathrm{10} \\ $$

Question Number 57062    Answers: 2   Comments: 2

find the sum of all three digital natural numbers that are divisible by 7

$${find}\:{the}\:{sum}\:{of}\:{all} \\ $$$${three}\:{digital}\:{natural} \\ $$$${numbers}\:{that}\:{are}\: \\ $$$${divisible}\:{by}\:\mathrm{7} \\ $$

Question Number 56971    Answers: 1   Comments: 1

Question Number 56949    Answers: 0   Comments: 1

Question Number 56932    Answers: 1   Comments: 0

let f_n (t) =∫_0 ^∞ (dx/((x^2 +t^2 )^n )) with n from N and n≥1 1. find a explicit form of f_n (t) 2. what is the value of g_n (t)=∫_0 ^∞ ((t dx)/((x^2 +t^2 )^(n+1) )) ? 3. calculate ∫_0 ^∞ (dx/((x^2 +3)^4 )) and ∫_0 ^∞ (dx/((x^2 +16)^3 ))

$${let}\:{f}_{{n}} \left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{{n}} } \\ $$$${with}\:{n}\:{from}\:{N}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\mathrm{1}.\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}_{{n}} \left({t}\right) \\ $$$$\mathrm{2}.\:{what}\:{is}\:{the}\:{value}\:{of} \\ $$$${g}_{{n}} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}\:{dx}}{\left({x}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }\:? \\ $$$$\mathrm{3}.\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{4}} } \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{16}\right)^{\mathrm{3}} } \\ $$

Question Number 56900    Answers: 1   Comments: 0

Question Number 56890    Answers: 0   Comments: 0

d^2 y/dx^2 =x^2 y=0

$${d}^{\mathrm{2}} {y}/{dx}^{\mathrm{2}} ={x}^{\mathrm{2}} {y}=\mathrm{0} \\ $$

Question Number 56854    Answers: 0   Comments: 1

There was a post sime time back about not being able to backup or restore. Can anyone send the requirdd information if you faced the same problem?

$$\mathrm{There}\:\mathrm{was}\:\mathrm{a}\:\mathrm{post}\:\mathrm{sime}\:\mathrm{time}\:\mathrm{back} \\ $$$$\mathrm{about}\:\mathrm{not}\:\mathrm{being}\:\mathrm{able}\:\mathrm{to}\:\mathrm{backup} \\ $$$$\mathrm{or}\:\mathrm{restore}.\:\mathrm{Can}\:\mathrm{anyone}\:\mathrm{send}\:\mathrm{the}\:\mathrm{requirdd} \\ $$$$\mathrm{information}\:\mathrm{if}\:\mathrm{you}\:\mathrm{faced}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{problem}? \\ $$

Question Number 56851    Answers: 0   Comments: 0

let: [u_n =(√u_(n−1) )+(√u_(n−2) ),u_0 =1,u_1 =1] ⇒ Σ_0 ^∞ ((1/u_n ))=?

$${let}:\:\left[\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}} =\sqrt{\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} }+\sqrt{\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}−\mathrm{2}} },\boldsymbol{\mathrm{u}}_{\mathrm{0}} =\mathrm{1},\boldsymbol{\mathrm{u}}_{\mathrm{1}} =\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\underset{\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{n}}} }\right)=? \\ $$

Question Number 56847    Answers: 0   Comments: 2

d2y/dx2=x2y=0

$${d}\mathrm{2}{y}/{dx}\mathrm{2}={x}\mathrm{2}{y}=\mathrm{0} \\ $$

Question Number 56823    Answers: 1   Comments: 1

Question Number 56775    Answers: 0   Comments: 1

if x,y∍ℜ,show that ∣x+y∣=∣x∣+∣y∣ iff xy≥0

$${if}\:{x},{y}\backepsilon\Re,{show}\:{that}\:\mid{x}+{y}\mid=\mid{x}\mid+\mid{y}\mid\:{iff}\:{xy}\geqslant\mathrm{0} \\ $$

Question Number 56664    Answers: 0   Comments: 2

Question Number 56663    Answers: 0   Comments: 0

i think everybody are in deep thought...

$${i}\:{think}\:{everybody}\:{are}\:{in}\:{deep}\:{thought}... \\ $$

Question Number 56661    Answers: 0   Comments: 0

  Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96      Pg 97   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com