Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 92

Question Number 56467    Answers: 1   Comments: 0

x^3 +ax^2 +bx+c=0 Transform to t^3 +k=0 .

$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${Transform}\:{to}\: \\ $$$$\:\:\:{t}^{\mathrm{3}} +{k}=\mathrm{0}\:. \\ $$

Question Number 56378    Answers: 0   Comments: 2

Question Number 56358    Answers: 0   Comments: 3

∫_0 ^∞ (cot^(−1) x)^2 dx

$$\int_{\mathrm{0}} ^{\infty} \left(\mathrm{cot}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} {dx} \\ $$$$ \\ $$

Question Number 56321    Answers: 2   Comments: 0

Solve for x and y x (√x) + y(√y) = 182 ..... (i) x (√y) + y(√x) = 183 ..... (ii)

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{x}}\:\:+\:\mathrm{y}\sqrt{\mathrm{y}}\:\:=\:\mathrm{182}\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{y}}\:\:+\:\mathrm{y}\sqrt{\mathrm{x}}\:\:=\:\mathrm{183}\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$

Question Number 56282    Answers: 0   Comments: 5

Question Number 56243    Answers: 1   Comments: 0

6/2×5 which one correct 6/2×5 6/2×5 =3×5 =6/10 =15 =0.6

$$\mathrm{6}/\mathrm{2}×\mathrm{5} \\ $$$$\:{which}\:{one}\:{correct} \\ $$$$\mathrm{6}/\mathrm{2}×\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}/\mathrm{2}×\mathrm{5} \\ $$$$=\mathrm{3}×\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{6}/\mathrm{10} \\ $$$$=\mathrm{15}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}.\mathrm{6} \\ $$

Question Number 56215    Answers: 4   Comments: 2

(√(x/(x−1)))+(√((x−1)/x))=2 find x

$$\sqrt{\frac{{x}}{{x}−\mathrm{1}}}+\sqrt{\frac{{x}−\mathrm{1}}{{x}}}=\mathrm{2} \\ $$$$ \\ $$$${find}\:{x} \\ $$

Question Number 56214    Answers: 3   Comments: 0

x^x =4 find x

$${x}^{{x}} =\mathrm{4} \\ $$$$ \\ $$$${find}\:{x} \\ $$

Question Number 56213    Answers: 1   Comments: 1

xsin x=5 find x

$${x}\mathrm{sin}\:{x}=\mathrm{5} \\ $$$$ \\ $$$${find}\:{x} \\ $$

Question Number 56205    Answers: 1   Comments: 0

find (or prove it can′t exist) a f:R→R diferentiable such that ∫_(a−δ) ^(a+δ) f(x)dx=0,∀a∈R,δ>0 (df/dx)=0,∀x∈R

$$\mathrm{find}\:\left(\mathrm{or}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{can}'\mathrm{t}\:\mathrm{exist}\right)\:\mathrm{a}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{diferentiable} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\underset{{a}−\delta} {\overset{{a}+\delta} {\int}}{f}\left({x}\right){dx}=\mathrm{0},\forall{a}\in\mathbb{R},\delta>\mathrm{0} \\ $$$$\frac{{df}}{{dx}}=\mathrm{0},\forall{x}\in\mathbb{R} \\ $$

Question Number 56190    Answers: 0   Comments: 0

There was a post some time back for failed import. Can u please resend the email? Email address to be used is info@tinkutara.com Thanks

$$\mathrm{There}\:\mathrm{was}\:\mathrm{a}\:\mathrm{post}\:\mathrm{some}\:\mathrm{time}\:\mathrm{back} \\ $$$$\mathrm{for}\:\mathrm{failed}\:\mathrm{import}.\:\mathrm{Can}\:\mathrm{u}\:\mathrm{please} \\ $$$$\mathrm{resend}\:\mathrm{the}\:\mathrm{email}?\:\mathrm{Email}\:\mathrm{address} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{used}\:\mathrm{is}\:\mathrm{info}@\mathrm{tinkutara}.\mathrm{com} \\ $$$$\mathrm{Thanks} \\ $$

Question Number 56165    Answers: 1   Comments: 0

Question Number 56124    Answers: 2   Comments: 0

Question Number 56120    Answers: 1   Comments: 0

Question Number 55877    Answers: 0   Comments: 0

Question Number 55859    Answers: 1   Comments: 0

Question Number 55858    Answers: 0   Comments: 0

Question Number 55856    Answers: 1   Comments: 1

For what values of p the integral ∫_0 ^1 x^p ln x dx converge?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{p}} \:\mathrm{ln}\:{x}\:{dx} \\ $$$$\mathrm{converge}? \\ $$

Question Number 55815    Answers: 1   Comments: 0

prove that (1+x)^n = 1+nx +((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...n(n−n) using a suitable expansion method hence determine the expansion of (2.001)^(89)

$${prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} =\:\mathrm{1}+{nx}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +...{n}\left({n}−{n}\right) \\ $$$${using}\:{a}\:{suitable}\:{expansion}\:{method} \\ $$$${hence}\:{determine}\:{the}\:{expansion}\:{of} \\ $$$$\left(\mathrm{2}.\mathrm{001}\right)^{\mathrm{89}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 55813    Answers: 0   Comments: 0

((0.8)/x)=((96)/(60))⇒x=0.5⇒0.8−0.5=0.3⇒0.4−0.3=0.1

$$\frac{\mathrm{0}.\mathrm{8}}{{x}}=\frac{\mathrm{96}}{\mathrm{60}}\Rightarrow{x}=\mathrm{0}.\mathrm{5}\Rightarrow\mathrm{0}.\mathrm{8}−\mathrm{0}.\mathrm{5}=\mathrm{0}.\mathrm{3}\Rightarrow\mathrm{0}.\mathrm{4}−\mathrm{0}.\mathrm{3}=\mathrm{0}.\mathrm{1} \\ $$

Question Number 55770    Answers: 0   Comments: 0

Let A and B are matrices in R^(2017×2017) that satisfy A^(−1) = (A + B)^(−1) − B^(−1) and det(A^(−1) ) = 2017 Find det(B)

$$\mathrm{Let}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{matrices}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2017}×\mathrm{2017}} \:\mathrm{that}\:\mathrm{satisfy} \\ $$$${A}^{−\mathrm{1}} \:=\:\left({A}\:+\:{B}\right)^{−\mathrm{1}} \:−\:{B}^{−\mathrm{1}} \\ $$$$\mathrm{and} \\ $$$$\mathrm{det}\left({A}^{−\mathrm{1}} \right)\:=\:\mathrm{2017} \\ $$$$\mathrm{Find}\:\:\:\mathrm{det}\left({B}\right) \\ $$

Question Number 55675    Answers: 0   Comments: 0

Question Number 55557    Answers: 0   Comments: 0

Goodday great minds.Its been quite a while. Please can anyone recommend any site, app or video that can explain the elevation and 3d of shapes.Please I sincerely need your help. Thanks in advance.

$${Goodday}\:{great}\:{minds}.{Its}\:{been}\:{quite}\:{a} \\ $$$${while}.\:{Please}\:{can}\:{anyone}\:{recommend} \\ $$$${any}\:{site},\:{app}\:{or}\:{video}\:{that}\:{can}\:{explain}\:{the} \\ $$$${elevation}\:{and}\:\mathrm{3}{d}\:{of}\:{shapes}.{Please}\:{I} \\ $$$${sincerely}\:{need}\:{your}\:{help}. \\ $$$$ \\ $$$${Thanks}\:{in}\:{advance}. \\ $$

Question Number 55534    Answers: 1   Comments: 0

A dish of mixed nut contains cashew and peanut . then two ounces of peanut are added to the dish making the new mixture of 20% cashew. Sara like cashew so she added 2 ounces of them to the dish. The mixture in the dish is now 33.33%. Cashews. what percentage of the origional mixture of nut was cashew? this was the correct question please help

$${A}\:{dish}\:{of}\:{mixed}\:{nut}\:{contains}\:{cashew} \\ $$$${and}\:{peanut}\:.\:{then}\:{two}\:{ounces}\:{of}\: \\ $$$${peanut}\:{are}\:{added}\:{to}\:{the}\:{dish}\:{making} \\ $$$${the}\:{new}\:{mixture}\:{of}\:\mathrm{20\%}\:{cashew}.\: \\ $$$${Sara}\:{like}\:{cashew}\:{so}\:{she}\:{added}\: \\ $$$$\mathrm{2}\:{ounces}\:{of}\:{them}\:{to}\:{the}\:{dish}.\:{The} \\ $$$${mixture}\:{in}\:{the}\:{dish}\:{is}\:{now}\:\:\mathrm{33}.\mathrm{33\%}.\: \\ $$$${Cashews}.\:{what}\:{percentage}\:{of}\:{the}\: \\ $$$${origional}\:{mixture}\:{of}\:{nut}\:{was}\:\: \\ $$$${cashew}?\:{this}\:{was}\:{the}\:{correct}\:{question} \\ $$$${please}\:{help} \\ $$

Question Number 55449    Answers: 1   Comments: 0

Question Number 55418    Answers: 3   Comments: 1

  Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com