Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 91

Question Number 64017    Answers: 0   Comments: 4

why can′t we differentiate or intergrate powers of trigonometric functions such as 1) ∫cos^2 xdx? 3) ∫tan^2 2xdx 2)∫sin^2 xdx? 4) ∫sin^(10) x hence how do we solve such problems.?

$${why}\:{can}'{t}\:{we}\:{differentiate}\:{or}\:{intergrate}\:{powers}\:{of}\:{trigonometric} \\ $$$${functions}\:{such}\:{as}\: \\ $$$$\left.\mathrm{1}\left.\right)\:\int{cos}^{\mathrm{2}} {xdx}?\:\:\:\:\mathrm{3}\right)\:\int{tan}^{\mathrm{2}} \mathrm{2}{xdx} \\ $$$$\left.\mathrm{2}\left.\right)\int{sin}^{\mathrm{2}} {xdx}?\:\:\:\:\:\mathrm{4}\right)\:\int{sin}^{\mathrm{10}} {x} \\ $$$${hence}\:{how}\:{do}\:{we}\:{solve}\:{such}\:{problems}.? \\ $$

Question Number 64015    Answers: 1   Comments: 0

How can such questions be solved.? x^2 −∣7∣ +10=0 x^2 −∣x∣−6>0

$$\:{How}\:{can}\:{such}\:{questions}\:{be}\:{solved}.? \\ $$$$\:\:{x}^{\mathrm{2}} −\mid\mathrm{7}\mid\:+\mathrm{10}=\mathrm{0} \\ $$$$\:\:{x}^{\mathrm{2}} −\mid{x}\mid−\mathrm{6}>\mathrm{0} \\ $$$$\:\: \\ $$

Question Number 63984    Answers: 1   Comments: 5

is it true? e^(lnx) = x? if so then (d/dx)(e^(lnx) )=?

$${is}\:{it}\:{true}? \\ $$$$\:\:{e}^{{lnx}} =\:{x}? \\ $$$${if}\:{so}\:{then}\:\:\frac{{d}}{{dx}}\left({e}^{{lnx}} \right)=? \\ $$

Question Number 63983    Answers: 1   Comments: 0

Please i need someones help on this How do i find an Asymptote to a curve? and also how find a general solution for a differential equation.

$${Please}\:{i}\:{need}\:{someones}\:{help}\:{on}\:{this}\: \\ $$$${How}\:{do}\:{i}\:{find}\:{an}\:{Asymptote}\:{to}\:{a}\:{curve}? \\ $$$${and}\:{also}\:{how}\:{find}\:{a}\:{general}\:{solution}\:{for}\:{a}\:{differential}\: \\ $$$${equation}. \\ $$$$ \\ $$

Question Number 63891    Answers: 0   Comments: 0

A bus is travelling along a straight road at 100Km/hr and the bus conductor walks at 6Km/hr on the floor of the bus and in the same direction as the bus. Find the speed of the conductor relative to the road, and relative to the bus. If the bus conductor now works at the same rate but in the opposite direction as the bus, find his new speed relative to the road. Answers in textbook: 106Km/hr, 64Km/hr, 94Km/hr

$$\mathrm{A}\:\mathrm{bus}\:\mathrm{is}\:\mathrm{travelling}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{road}\:\mathrm{at}\:\mathrm{100Km}/\mathrm{hr}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{bus}\:\mathrm{conductor}\:\mathrm{walks}\:\mathrm{at}\:\mathrm{6Km}/\mathrm{hr}\:\mathrm{on}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bus} \\ $$$$\mathrm{and}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same}\:\mathrm{direction}\:\mathrm{as}\:\mathrm{the}\:\mathrm{bus}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{conductor}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{road},\:\mathrm{and} \\ $$$$\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{bus}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{bus}\:\mathrm{conductor}\:\mathrm{now}\:\mathrm{works}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{rate}\:\mathrm{but}\:\mathrm{in}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{direction}\:\mathrm{as}\:\mathrm{the}\:\mathrm{bus},\:\mathrm{find}\:\mathrm{his}\:\mathrm{new}\:\mathrm{speed} \\ $$$$\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{road}. \\ $$$$\mathrm{Answers}\:\mathrm{in}\:\mathrm{textbook}:\:\:\:\:\mathrm{106Km}/\mathrm{hr},\:\:\:\:\mathrm{64Km}/\mathrm{hr},\:\:\:\:\:\mathrm{94Km}/\mathrm{hr} \\ $$

Question Number 63812    Answers: 0   Comments: 2

A can terminate a work 9 hour earlier than B. A and B terminate that work after 20 hour together. A can terminate that work after .... hour.

$$ \\ $$$${A}\:\:{can}\:{terminate}\:{a}\:{work}\:\:\mathrm{9}\:{hour}\:{earlier} \\ $$$${than}\:{B}. \\ $$$${A}\:\:{and}\:\:{B}\:\:{terminate}\:{that}\:{work}\:\:{after}\:\mathrm{20}\:{hour}\:{together}. \\ $$$${A}\:{can}\:{terminate}\:{that}\:{work}\:{after}\:....\:{hour}. \\ $$$$ \\ $$$$ \\ $$

Question Number 63758    Answers: 0   Comments: 6

Tanmay Sir. Are you ok ?

$$\mathrm{Tanmay}\:\mathrm{Sir}.\:\mathrm{Are}\:\mathrm{you}\:\mathrm{ok}\:? \\ $$

Question Number 63790    Answers: 2   Comments: 0

Question Number 63789    Answers: 0   Comments: 0

Question Number 63788    Answers: 1   Comments: 0

Question Number 63700    Answers: 0   Comments: 0

Question Number 63689    Answers: 0   Comments: 3

Show that if a∣b then an∣bn

$${Show}\:{that}\:\:{if}\:\:{a}\mid{b}\:\:{then}\:{an}\mid{bn} \\ $$

Question Number 63684    Answers: 0   Comments: 0

cot 118

$$\mathrm{cot}\:\mathrm{118} \\ $$

Question Number 63552    Answers: 1   Comments: 1

Calculate ∫_0 ^(1/2) x(√(x^2 +1)) dx+∫_(1/2) ^1 x^2 (√(x^3 +1)) dx+∫_1 ^2 x^3 (√(x^4 +1)) dx+∫_2 ^3 x^4 (√(x^5 +1 ))dx+...+∫_(78) ^(79) x^(80) (√(x^(81) +1)) dx+∫_(79) ^(80) x^(81) (√(x^(82) +1)) dx usingΣ_(n=2) ^(80) ∫_(n−1) ^n x^(n+1) (√(x^(n+2) +1))dx

$${Calculate}\:\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}+\underset{\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\mathrm{1}} {\int}}{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}+\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx}+\underset{\mathrm{2}} {\overset{\mathrm{3}} {\int}}{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{5}} +\mathrm{1}\:}{dx}+...+\underset{\mathrm{78}} {\overset{\mathrm{79}} {\int}}{x}^{\mathrm{80}} \sqrt{{x}^{\mathrm{81}} +\mathrm{1}}\:{dx}+\underset{\mathrm{79}} {\overset{\mathrm{80}} {\int}}{x}^{\mathrm{81}} \sqrt{{x}^{\mathrm{82}} +\mathrm{1}}\:{dx} \\ $$$${using}\underset{{n}=\mathrm{2}} {\overset{\mathrm{80}} {\sum}}\underset{{n}−\mathrm{1}} {\overset{{n}} {\int}}{x}^{{n}+\mathrm{1}} \sqrt{{x}^{{n}+\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 63534    Answers: 1   Comments: 0

find the set of values of x for which y is real if y=(((x−2)(x−1))/(x+2)) , x≠−2, x∈R

$${find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{x}\:{for}\:{which}\:{y}\:{is}\:{real}\:{if}\: \\ $$$$\:{y}=\frac{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{1}\right)}{{x}+\mathrm{2}}\:,\:{x}\neq−\mathrm{2},\:{x}\in\mathbb{R} \\ $$

Question Number 63532    Answers: 1   Comments: 0

prove that there exist unique intergers p and s sucb that a = bp + s with −((∣b∣)/2)< s ≤((∣b∣)/2) hence find p and s given that a=49 and b=26

$${prove}\:{that}\:{there}\:{exist}\:{unique}\:{intergers}\:{p}\:{and}\:{s}\:{sucb}\:{that} \\ $$$${a}\:=\:{bp}\:+\:{s}\:{with}\:−\frac{\mid{b}\mid}{\mathrm{2}}<\:{s}\:\leqslant\frac{\mid{b}\mid}{\mathrm{2}} \\ $$$${hence}\:{find}\:{p}\:{and}\:{s}\:{given}\:{that}\:{a}=\mathrm{49}\:{and}\:{b}=\mathrm{26} \\ $$

Question Number 63517    Answers: 1   Comments: 0

Given that ∣z−6∣=2∣z+6−9i∣, a) Use algebra to show that the locus of z is a circle, stating its center and its radius. b) sketch the locus z on an argand diagram.

$$\mathrm{Given}\:\mathrm{that}\:\:\mid{z}−\mathrm{6}\mid=\mathrm{2}\mid{z}+\mathrm{6}−\mathrm{9}{i}\mid, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Use}\:\mathrm{algebra}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}, \\ $$$$\mathrm{stating}\:\mathrm{its}\:\mathrm{center}\:\mathrm{and}\:\mathrm{its}\:\mathrm{radius}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{locus}\:{z}\:\mathrm{on}\:\mathrm{an}\:\mathrm{argand}\:\mathrm{diagram}. \\ $$

Question Number 63507    Answers: 1   Comments: 0

let U_n =∫_(1/n) ^1 ((√(x^2 +x+1)) −(√(x^2 −x+1)))dx (n>0) 1)calculate lim_(n→+∞) U_n 2) find nature of Σ U_n

$${let}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}\:\:\:\left({n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{nature}\:{of}\:\:\Sigma\:{U}_{{n}} \\ $$

Question Number 63499    Answers: 1   Comments: 0

given that a∣b, show that −a∣b.

$${given}\:{that}\:\:\:{a}\mid{b},\:{show}\:{that}\:−{a}\mid{b}. \\ $$

Question Number 63447    Answers: 1   Comments: 2

How to calculate ⌈(n) using gamma function ∀n∈R

$${How}\:{to}\:{calculate}\:\lceil\left({n}\right)\: \\ $$$${using}\:{gamma}\:{function} \\ $$$$\forall{n}\in{R} \\ $$

Question Number 63428    Answers: 0   Comments: 2

It is given that S_n =Σ_(r=1) ^n (3r^(2 ) −3r−1). Use the the formulae of Σ_(r=1) ^n r^(2 ) and Σ_(r=1) ^n r to show that S_n =n^3 . sir Forkum Michael

$${It}\:{is}\:{given}\:{that}\:{S}_{{n}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{r}^{\mathrm{2}\:} −\mathrm{3}{r}−\mathrm{1}\right).\:{Use}\:{the}\:{the}\:{formulae} \\ $$$${of}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}\:\:} {and}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\:\:{to}\:{show}\:{that}\:{S}_{{n}} ={n}^{\mathrm{3}} . \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

Question Number 63425    Answers: 0   Comments: 0

The probability that a vaccinated person(V) contracts a disease is (1/(20)). For a person vaccinated(V ′) , the probability of contracting a disease is (5/6). In a certain town 90%of thepopulation has been vaccinated against a disease. A person is selected at random from the town,find the probability that: (a) he has the disease, (b) he is vaccinated or he has the disease. sir Forkum Michael

$${The}\:{probability}\:{that}\:{a}\:{vaccinated}\:{person}\left({V}\right)\:{contracts}\:{a}\:{disease} \\ $$$${is}\:\frac{\mathrm{1}}{\mathrm{20}}.\:{For}\:{a}\:{person}\:{vaccinated}\left({V}\:'\right)\:,\:{the}\:{probability}\:{of}\:{contracting} \\ $$$${a}\:{disease}\:{is}\:\frac{\mathrm{5}}{\mathrm{6}}.\:{In}\:{a}\:{certain}\:{town}\:\mathrm{90\%}{of}\:{thepopulation}\:{has} \\ $$$${been}\:{vaccinated}\:{against}\:{a}\:{disease}.\:{A}\:{person}\:{is}\:{selected}\:{at} \\ $$$${random}\:{from}\:{the}\:{town},{find}\:{the}\:{probability}\:{that}: \\ $$$$\left({a}\right)\:{he}\:{has}\:{the}\:{disease}, \\ $$$$\left({b}\right)\:{he}\:{is}\:{vaccinated}\:{or}\:{he}\:{has}\:{the}\:{disease}. \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

Question Number 63424    Answers: 0   Comments: 0

A colony of bacteria if left undisturbed will grow at a rate proportional to the number of bacteria, P present at time,t. However,a toxic substance is being added slowly such that at time t, the bacteria also die at the rate μPt where μ is a positive constant. (a) Show that at time t the rate of growth of the bacteria in the colony is governed by the differential equation (dP/dt)= (k−μt)p where k is apositive constant. when t=0, (dP/dt)=2P and when t=1, (dP/dt)=((19)/(10))P (b) show that (dP/dt)= (1/(10))(20−t)P. Sir Forkum Michael.

$${A}\:{colony}\:{of}\:{bacteria}\:{if}\:{left}\:{undisturbed}\:{will}\:{grow}\:{at}\:{a}\:{rate} \\ $$$${proportional}\:{to}\:{the}\:{number}\:{of}\:{bacteria},\:{P}\:{present}\:{at}\:{time},{t}. \\ $$$${However},{a}\:{toxic}\:{substance}\:{is}\:{being}\:{added}\:{slowly}\:{such}\:{that} \\ $$$${at}\:{time}\:{t},\:{the}\:{bacteria}\:{also}\:{die}\:{at}\:{the}\:{rate}\:\mu{Pt}\:{where}\:\mu\:{is} \\ $$$${a}\:{positive}\:{constant}. \\ $$$$\left({a}\right)\:\:{Show}\:{that}\:{at}\:{time}\:{t}\:{the}\:{rate}\:{of}\:{growth}\:{of}\:{the}\:{bacteria}\:{in} \\ $$$${the}\:{colony}\:{is}\:{governed}\:{by}\:{the}\:{differential}\:{equation} \\ $$$$\:\frac{{dP}}{{dt}}=\:\left({k}−\mu{t}\right){p}\:{where}\:{k}\:{is}\:{apositive}\:{constant}. \\ $$$${when}\:{t}=\mathrm{0},\:\frac{{dP}}{{dt}}=\mathrm{2}{P}\:{and}\:{when}\:{t}=\mathrm{1},\:\frac{{dP}}{{dt}}=\frac{\mathrm{19}}{\mathrm{10}}{P} \\ $$$$\left({b}\right)\:{show}\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dP}}{{dt}}=\:\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{20}−{t}\right){P}. \\ $$$$\:{Sir}\:{Forkum}\:{Michael}. \\ $$

Question Number 63296    Answers: 1   Comments: 1

A random Variable Y has probability function P, defined by P(y) = { (((y^2 /k) , y= 1,2,3)),(((((y−7)^2 )/k) , y= 4,5,6)),((0 , otherwise.)) :} Find (i) The value of the constant k. (ii) the mean and varriance of Y. (iii) The variance R, where R= 2Y −3.

$${A}\:{random}\:{Variable}\:{Y}\:{has}\:{probability}\:{function}\:{P},\:{defined}\:{by} \\ $$$$\:{P}\left({y}\right)\:=\:\begin{cases}{\frac{{y}^{\mathrm{2}} }{{k}}\:,\:{y}=\:\mathrm{1},\mathrm{2},\mathrm{3}}\\{\frac{\left({y}−\mathrm{7}\right)^{\mathrm{2}} }{{k}}\:,\:{y}=\:\mathrm{4},\mathrm{5},\mathrm{6}}\\{\mathrm{0}\:\:\:\:,\:{otherwise}.}\end{cases} \\ $$$${Find}\: \\ $$$$\left({i}\right)\:{The}\:{value}\:{of}\:{the}\:{constant}\:{k}. \\ $$$$\left({ii}\right)\:{the}\:{mean}\:{and}\:{varriance}\:{of}\:{Y}. \\ $$$$\left({iii}\right)\:{The}\:{variance}\:{R},\:{where}\:{R}=\:\mathrm{2}{Y}\:−\mathrm{3}. \\ $$

Question Number 63267    Answers: 0   Comments: 3

lim_(n→∞) (((n^3 + 1)/(n^3 − 1)))^(2n − n^3 )

$$\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\left(\frac{\mathrm{n}^{\mathrm{3}} \:+\:\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \:−\:\mathrm{1}}\right)^{\mathrm{2n}\:−\:\mathrm{n}^{\mathrm{3}} } \\ $$

Question Number 63288    Answers: 1   Comments: 0

  Pg 86      Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com