Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 91
Question Number 62395 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{Most}\:\mathrm{Beautiful}\:\mathrm{Equation} \\ $$$$\mathrm{for}\:\mathrm{me}\:\mathrm{is}: \\ $$$$\mathrm{e}^{{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{INCREDIBLE}! \\ $$$$#\mathrm{Euler}'\mathrm{sIdentity} \\ $$
Question Number 62341 Answers: 2 Comments: 3
$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{root}\:\mathrm{does}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\mathrm{x}^{\mathrm{8}} \:−\:\mathrm{x}^{\mathrm{7}} \:+\:\mathrm{2x}^{\mathrm{6}} \:−\:\mathrm{2x}^{\mathrm{5}} \:+\:\mathrm{3x}^{\mathrm{4}} \:−\:\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{4x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\frac{\mathrm{5}}{\mathrm{2}}\:\:=\:\:\mathrm{0}\:\:\:\:\:\:\:\mathrm{has} \\ $$
Question Number 62288 Answers: 0 Comments: 0
$${M}_{{TP}} ={Q}\frac{{D}}{{Z}}\:×\:{f}_{} \\ $$
Question Number 62241 Answers: 1 Comments: 0
$$\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:{A}\:{B}\:{C}\:{with}\:{position}\:{vector}\: \\ $$$$\left(\mathrm{20}\hat {{i}}+\lambda\hat {{j}}\right)\:\left(\mathrm{5}\hat {{i}}−\hat {{j}}\right)\:{and}\left(\mathrm{10}\hat {{i}}−\mathrm{13}\hat {{j}}\right)\:{are} \\ $$$${collinear}\:{then}\:{the}\:{value}\:{of}\:\lambda\:{is}: \\ $$
Question Number 62139 Answers: 0 Comments: 0
$$\mathrm{6}+\mathrm{5}>\mathrm{3}×\mathrm{5}\:\mathrm{true}\:\mathrm{or}\:\mathrm{false} \\ $$
Question Number 62109 Answers: 1 Comments: 2
$${Given}\:{that} \\ $$$$\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}}\right)\mathrm{tan}\:{x}=\left(\mathrm{1}+\sqrt{\mathrm{1}−{x}}\right). \\ $$$${Then}\:{find}\:\:\:\mathrm{sin}\:\mathrm{4}{x}. \\ $$
Question Number 62088 Answers: 0 Comments: 3
Question Number 62037 Answers: 1 Comments: 0
$$\mathrm{3}{no}_{\mathrm{2}} +{h}_{\mathrm{2}} {o}\Rightarrow\mathrm{2}{hno}_{\mathrm{3}} +{no} \\ $$$$ \\ $$
Question Number 62036 Answers: 0 Comments: 3
$$\mathrm{Correct}\:\mathrm{me}\:\mathrm{if}\:\mathrm{I}\:\mathrm{am}\:\mathrm{wrong}. \\ $$$$\underset{\sqrt{−\mathrm{1}}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\mathrm{x}_{\sqrt{−\mathrm{1}}} +\mathrm{y}_{\sqrt{−\mathrm{1}}} \\ $$$$\therefore\left({i}=\sqrt{−\mathrm{1}}\right) \\ $$$$ \\ $$
Question Number 62016 Answers: 0 Comments: 1
$${the}\:\mathrm{2}\:{and}\:\mathrm{3}\:{term}\:{of}\:{GP}\:\:{is}\:\mathrm{24} \\ $$$${and}\:\mathrm{12}\left({x}+\mathrm{1}\right).{If}\:{the}\:{sum}\:{of}\:{the}\: \\ $$$${first}\:\mathrm{3}\:{terms}\:{is}\:\mathrm{76}.{Find}\:{the}\:{value} \\ $$$${of}\:{x} \\ $$
Question Number 61923 Answers: 1 Comments: 0
$${Find}\:\:{all}\:\:{solutions}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\:\mathrm{12}{x}\:+\:\mathrm{8}\:=\:\:\mathrm{0} \\ $$
Question Number 61915 Answers: 1 Comments: 0
$$\mathrm{1}+{iw}+\left({iw}\right)^{\mathrm{2}} +\left({iw}\right)^{\mathrm{3}} +.........\left({iw}\right)^{\mathrm{989}} =? \\ $$$$ \\ $$$${ans}=\:\:\:\:\frac{\mathrm{2}}{\mathrm{1}−{iw}}\:\:\:\:\:\:{answer}\:{is}\:{correct}. \\ $$$${pls}\:{help}\:..\:{how}\:{to}\:{do}\:{this}? \\ $$$${TIA} \\ $$
Question Number 61843 Answers: 0 Comments: 3
$$\boldsymbol{{let}}\:\boldsymbol{{V}}\:\:\:\boldsymbol{{be}}\:\boldsymbol{{a}}\:\boldsymbol{{vector}}\:\boldsymbol{{space}}\:\boldsymbol{{and}}\:\boldsymbol{{let}}\:\boldsymbol{{H}}\:\boldsymbol{{and}}\:\boldsymbol{{K}}\:\boldsymbol{{be}}\: \\ $$$$\boldsymbol{{subspace}}\:\boldsymbol{{of}}\:\boldsymbol{{V}}.\:\boldsymbol{{show}}\:\boldsymbol{{that}}\:, \\ $$$${H}+{K}=\left\{\boldsymbol{{x}}:\boldsymbol{{x}}=\boldsymbol{{h}}+\boldsymbol{{k}},\:\boldsymbol{{where}}\:\boldsymbol{{h}}\in{H}\:\boldsymbol{{and}}\:\:\boldsymbol{{k}}\in{K}\right\}\:\boldsymbol{{is}}\:\:\boldsymbol{{a}}\:\boldsymbol{{subspace}}\:\boldsymbol{{of}}\:\boldsymbol{{V}}.\: \\ $$
Question Number 61840 Answers: 1 Comments: 0
$$\boldsymbol{{consider}}\:\boldsymbol{{the}}\:\boldsymbol{{triple}}\:\boldsymbol{{of}}\:\boldsymbol{{real}}\:\boldsymbol{{numbers}}\:\left(\boldsymbol{{x}},{y},{z}\right) \\ $$$${defined}\:{by}\:{the}\:{addittion}\:\left(\boldsymbol{{x}},{y},{z}\right)+\left({x}',{y}',{z}'\right)=\left({x}+{x}',{y}+{y}',{z}+{z}'\right) \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{scalar}}\:\boldsymbol{{multiplication}}\:\boldsymbol{{by}}\:\:\:\boldsymbol{\alpha}\left({x},{y},{z}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{0}\right).\: \\ $$$$\boldsymbol{{S}}{how}\:{that}\:{all}\:{axioms}\:{for}\:{a}\:{vector}\:{space}\:{are}\:{satisfied}\:{except}\:{axiom}\:\mathrm{8}. \\ $$
Question Number 61767 Answers: 0 Comments: 0
Question Number 61755 Answers: 1 Comments: 2
$$\mathrm{if}\:{f}\left({z}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} {z}^{{k}} ,{a}_{{k}} ,{z}\in\mathbb{C}.\mathrm{Prove} \\ $$$$ \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\underset{\mid{z}\mid={r}\:} {\int}\frac{{f}\left({z}\right)}{{z}^{{k}+\mathrm{1}} }{dz} \\ $$$$ \\ $$
Question Number 61744 Answers: 0 Comments: 7
$$\mathrm{3}{xy}^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{9}\:−−−−−\left(\mathrm{1}\right) \\ $$$$\mathrm{3}{x}^{\mathrm{2}} {y}+{y}^{\mathrm{3}} =\mathrm{18}−−−−\left(\mathrm{2}\right) \\ $$$${Find}\:{x}\:{and}\:{y} \\ $$
Question Number 61646 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={e}^{−{ax}} \:{arctan}\left(\mathrm{3}{x}\right)\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:\left({x}\right)\:{at}\:{integr}\:{serie}\:. \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{f}\left({x}\right){dx}\:. \\ $$
Question Number 61625 Answers: 1 Comments: 0
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+...}}}}}= \\ $$
Question Number 61510 Answers: 0 Comments: 0
$${S}_{\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{\left(\mathrm{16}{n}−\mathrm{16}{k}\right)\left(\mathrm{16}{n}+\mathrm{16}{k}\right)} \\ $$$${S}_{\mathrm{2}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{\left(\mathrm{16}{k}−\mathrm{16}\right)\left(\mathrm{16}{k}+\mathrm{16}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{S}_{\mathrm{1}} +{S}_{\mathrm{2}} }{{n}^{\mathrm{2}} }=? \\ $$
Question Number 61402 Answers: 0 Comments: 0
Question Number 61378 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:=\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \\ $$
Question Number 61327 Answers: 1 Comments: 0
Question Number 61318 Answers: 1 Comments: 0
Question Number 61241 Answers: 5 Comments: 0
Question Number 61210 Answers: 2 Comments: 1
$${for}\:{what}\:{value}\:{of}\:\theta,\:\:{e}^{{i}\theta} =\mathrm{0}\:\: \\ $$
Pg 86 Pg 87 Pg 88 Pg 89 Pg 90 Pg 91 Pg 92 Pg 93 Pg 94 Pg 95
Terms of Service
Privacy Policy
Contact: info@tinkutara.com