Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 91

Question Number 60135    Answers: 1   Comments: 0

Question Number 60022    Answers: 0   Comments: 0

construct M^′ z^′ =(1/2)(((z+∣z∣)/3))

$${construct}\:{M}^{'} \:{z}^{'} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{z}+\mid{z}\mid}{\mathrm{3}}\right) \\ $$

Question Number 60021    Answers: 1   Comments: 0

Question Number 60001    Answers: 0   Comments: 0

Question Number 59935    Answers: 0   Comments: 1

sir malwan you must revise analytical function and complex analysis...

$${sir}\:{malwan}\:{you}\:{must}\:{revise}\:\:{analytical}\:{function}\:{and}\:{complex}\:{analysis}... \\ $$

Question Number 59787    Answers: 2   Comments: 0

Question Number 59780    Answers: 1   Comments: 0

An earth-based observer sees rocket A moving at 0.70c directly towards rocket B,which is moving towards A at 0.80c. How fast does rocket A sees rocket B approaching?

$${An}\:{earth}-{based}\:{observer}\:{sees}\:{rocket}\:{A} \\ $$$${moving}\:{at}\:\mathrm{0}.\mathrm{70}{c}\:{directly}\:{towards}\:{rocket} \\ $$$${B},{which}\:{is}\:{moving}\:{towards}\:{A}\:{at}\:\mathrm{0}.\mathrm{80}{c}. \\ $$$${How}\:{fast}\:{does}\:{rocket}\:{A}\:{sees}\:{rocket}\:{B} \\ $$$${approaching}? \\ $$$$ \\ $$

Question Number 59752    Answers: 1   Comments: 2

Question Number 59685    Answers: 0   Comments: 0

Question Number 59675    Answers: 0   Comments: 0

you are welcome sir ali.

$${you}\:{are}\:{welcome}\:{sir}\:{ali}. \\ $$

Question Number 59655    Answers: 1   Comments: 3

Question Number 59639    Answers: 0   Comments: 3

Question Number 59588    Answers: 1   Comments: 1

find x,y in R (x+yi)^3 =((1+(√(15)) i)/((√5) − (√3) i))

$${find}\:{x},{y}\:{in}\:{R} \\ $$$$\left({x}+{yi}\right)^{\mathrm{3}} =\frac{\mathrm{1}+\sqrt{\mathrm{15}}\:{i}}{\sqrt{\mathrm{5}}\:−\:\sqrt{\mathrm{3}}\:{i}} \\ $$

Question Number 59505    Answers: 2   Comments: 0

Two particles P and Q move towards each other along a straight line MN, 51 meters long. P starts fromM with velocity 5 ms^(−1) and constant acceleration of 1 ms^(−2) . Q starts from N at the same time with velocity 6 ms^(−1) and at a constant acceleration of 3 ms^(−2) . Find the time when the: (a) particles are 30 metres apart; (b) particles meet; (c) velocity of P is (3/4) os the velocity of Q.

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}\:\mathrm{move}\:\mathrm{towards}\:\mathrm{each} \\ $$$$\mathrm{other}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:{MN},\:\mathrm{51}\:\mathrm{meters} \\ $$$$\mathrm{long}.\:\mathrm{P}\:\mathrm{starts}\:\mathrm{from}{M}\:\mathrm{with}\:\mathrm{velocity}\:\mathrm{5}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{1}\:\mathrm{ms}^{−\mathrm{2}} .\:\mathrm{Q}\:\mathrm{starts} \\ $$$$\mathrm{from}\:\mathrm{N}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time}\:\mathrm{with}\:\mathrm{velocity}\:\mathrm{6}\:\mathrm{ms}^{−\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{3}\:\mathrm{ms}^{−\mathrm{2}} . \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{time}\:\mathrm{when}\:\mathrm{the}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{particles}\:\mathrm{are}\:\mathrm{30}\:\mathrm{metres}\:\mathrm{apart}; \\ $$$$\left(\mathrm{b}\right)\:\mathrm{particles}\:\mathrm{meet}; \\ $$$$\left(\mathrm{c}\right)\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{P}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{os}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{Q}. \\ $$

Question Number 59478    Answers: 2   Comments: 0

x^4 +x^2 +16=0

$$\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$

Question Number 59442    Answers: 1   Comments: 2

Solve the system xy + 3x + 2y = − 6 ..... (i) yx + y + 3z = − 3 ..... (ii) zx + 2z + x = 2 ..... (iii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{xy}\:+\:\mathrm{3x}\:+\:\mathrm{2y}\:\:=\:−\:\mathrm{6}\:\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{yx}\:+\:\mathrm{y}\:+\:\mathrm{3z}\:\:\:=\:−\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{zx}\:+\:\mathrm{2z}\:+\:\mathrm{x}\:\:\:=\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{iii}\right) \\ $$

Question Number 59397    Answers: 0   Comments: 1

6^4 ×6^3

$$\mathrm{6}^{\mathrm{4}} ×\mathrm{6}^{\mathrm{3}} \\ $$

Question Number 59323    Answers: 1   Comments: 0

Question Number 59214    Answers: 0   Comments: 0

Question Number 59103    Answers: 0   Comments: 0

Question Number 59079    Answers: 0   Comments: 0

Question Number 59023    Answers: 0   Comments: 0

please solve my quens

$${please}\:{solve}\:{my}\:{quens} \\ $$

Question Number 58974    Answers: 1   Comments: 0

Question Number 58965    Answers: 0   Comments: 0

if a,b ∈C ∣ ∣a∣<1,∣b∣<1 ⇒∣((a−b)/(1−a^ b))∣<1^

$$\mathrm{if}\:{a},{b}\:\in\mathbb{C}\:\mid\:\mid{a}\mid<\mathrm{1},\mid{b}\mid<\mathrm{1} \\ $$$$\Rightarrow\mid\frac{{a}−{b}}{\mathrm{1}−\bar {{a}b}}\mid<\overset{} {\mathrm{1}} \\ $$

Question Number 58962    Answers: 0   Comments: 0

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Question Number 58928    Answers: 0   Comments: 2

  Pg 86      Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com