Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 91

Question Number 64396    Answers: 1   Comments: 0

(x+2)(x−2)

$$\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}−\mathrm{2}\right) \\ $$

Question Number 64391    Answers: 0   Comments: 1

(6/(a+5))+(4/(a+5))

$$\frac{\mathrm{6}}{\mathrm{a}+\mathrm{5}}+\frac{\mathrm{4}}{\mathrm{a}+\mathrm{5}} \\ $$

Question Number 64381    Answers: 0   Comments: 1

Question Number 64356    Answers: 1   Comments: 0

$$ \\ $$

Question Number 64354    Answers: 1   Comments: 0

some one write the statement a ≡−a(mod m) show that this statement is not generally true.! giving a counter example

$${some}\:{one}\:{write}\:{the}\:{statement} \\ $$$$\:{a}\:\equiv−{a}\left({mod}\:{m}\right)\: \\ $$$${show}\:{that}\:{this}\:{statement}\:{is}\:{not}\:{generally}\:{true}.!\:{giving}\:{a}\:{counter} \\ $$$${example} \\ $$

Question Number 64350    Answers: 0   Comments: 3

Given that f(x) = determinant ((x,x^2 ,x^3 ),(1,(2x),(3x^2 )),(0,2,(6x))), find f ′ (x)

$${Given}\:{that}\:{f}\left({x}\right)\:=\:\begin{vmatrix}{{x}}&{{x}^{\mathrm{2}} }&{{x}^{\mathrm{3}} }\\{\mathrm{1}}&{\mathrm{2}{x}}&{\mathrm{3}{x}^{\mathrm{2}} }\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{6}{x}}\end{vmatrix},\:{find}\:{f}\:'\:\left({x}\right) \\ $$

Question Number 64347    Answers: 0   Comments: 0

Two consecutive integers between which a root of the equation 1)x^3 +x−16=0 2) x^2 −3x+2=0 lies are;

$${Two}\:{consecutive}\:{integers}\:{between}\:{which}\:{a}\:{root}\:{of}\:{the}\:{equation} \\ $$$$\left.\:\mathrm{1}\right){x}^{\mathrm{3}} +{x}−\mathrm{16}=\mathrm{0}\: \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$$${lies}\:{are}; \\ $$

Question Number 64218    Answers: 0   Comments: 4

so goodbye everybody i am leaving this platform

$${so}\:{goodbye}\:{everybody}\:{i}\:{am}\:{leaving}\:{this}\:{platform} \\ $$

Question Number 64138    Answers: 1   Comments: 0

Question Number 64086    Answers: 0   Comments: 5

if 3x + 5y = 1 use Bezout′s identity to find the value of x and y

$${if}\:\:\:\mathrm{3}{x}\:+\:\mathrm{5}{y}\:=\:\mathrm{1} \\ $$$${use}\:{Bezout}'{s}\:{identity}\:{to}\:{find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$

Question Number 64018    Answers: 0   Comments: 11

sin3θ=? cos3θ=? tan3θ=?

$${sin}\mathrm{3}\theta=? \\ $$$${cos}\mathrm{3}\theta=? \\ $$$${tan}\mathrm{3}\theta=? \\ $$

Question Number 64017    Answers: 0   Comments: 4

why can′t we differentiate or intergrate powers of trigonometric functions such as 1) ∫cos^2 xdx? 3) ∫tan^2 2xdx 2)∫sin^2 xdx? 4) ∫sin^(10) x hence how do we solve such problems.?

$${why}\:{can}'{t}\:{we}\:{differentiate}\:{or}\:{intergrate}\:{powers}\:{of}\:{trigonometric} \\ $$$${functions}\:{such}\:{as}\: \\ $$$$\left.\mathrm{1}\left.\right)\:\int{cos}^{\mathrm{2}} {xdx}?\:\:\:\:\mathrm{3}\right)\:\int{tan}^{\mathrm{2}} \mathrm{2}{xdx} \\ $$$$\left.\mathrm{2}\left.\right)\int{sin}^{\mathrm{2}} {xdx}?\:\:\:\:\:\mathrm{4}\right)\:\int{sin}^{\mathrm{10}} {x} \\ $$$${hence}\:{how}\:{do}\:{we}\:{solve}\:{such}\:{problems}.? \\ $$

Question Number 64015    Answers: 1   Comments: 0

How can such questions be solved.? x^2 −∣7∣ +10=0 x^2 −∣x∣−6>0

$$\:{How}\:{can}\:{such}\:{questions}\:{be}\:{solved}.? \\ $$$$\:\:{x}^{\mathrm{2}} −\mid\mathrm{7}\mid\:+\mathrm{10}=\mathrm{0} \\ $$$$\:\:{x}^{\mathrm{2}} −\mid{x}\mid−\mathrm{6}>\mathrm{0} \\ $$$$\:\: \\ $$

Question Number 63984    Answers: 1   Comments: 5

is it true? e^(lnx) = x? if so then (d/dx)(e^(lnx) )=?

$${is}\:{it}\:{true}? \\ $$$$\:\:{e}^{{lnx}} =\:{x}? \\ $$$${if}\:{so}\:{then}\:\:\frac{{d}}{{dx}}\left({e}^{{lnx}} \right)=? \\ $$

Question Number 63983    Answers: 1   Comments: 0

Please i need someones help on this How do i find an Asymptote to a curve? and also how find a general solution for a differential equation.

$${Please}\:{i}\:{need}\:{someones}\:{help}\:{on}\:{this}\: \\ $$$${How}\:{do}\:{i}\:{find}\:{an}\:{Asymptote}\:{to}\:{a}\:{curve}? \\ $$$${and}\:{also}\:{how}\:{find}\:{a}\:{general}\:{solution}\:{for}\:{a}\:{differential}\: \\ $$$${equation}. \\ $$$$ \\ $$

Question Number 63891    Answers: 0   Comments: 0

A bus is travelling along a straight road at 100Km/hr and the bus conductor walks at 6Km/hr on the floor of the bus and in the same direction as the bus. Find the speed of the conductor relative to the road, and relative to the bus. If the bus conductor now works at the same rate but in the opposite direction as the bus, find his new speed relative to the road. Answers in textbook: 106Km/hr, 64Km/hr, 94Km/hr

$$\mathrm{A}\:\mathrm{bus}\:\mathrm{is}\:\mathrm{travelling}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{road}\:\mathrm{at}\:\mathrm{100Km}/\mathrm{hr}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{bus}\:\mathrm{conductor}\:\mathrm{walks}\:\mathrm{at}\:\mathrm{6Km}/\mathrm{hr}\:\mathrm{on}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bus} \\ $$$$\mathrm{and}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same}\:\mathrm{direction}\:\mathrm{as}\:\mathrm{the}\:\mathrm{bus}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{conductor}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{road},\:\mathrm{and} \\ $$$$\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{bus}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{bus}\:\mathrm{conductor}\:\mathrm{now}\:\mathrm{works}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{rate}\:\mathrm{but}\:\mathrm{in}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{direction}\:\mathrm{as}\:\mathrm{the}\:\mathrm{bus},\:\mathrm{find}\:\mathrm{his}\:\mathrm{new}\:\mathrm{speed} \\ $$$$\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{road}. \\ $$$$\mathrm{Answers}\:\mathrm{in}\:\mathrm{textbook}:\:\:\:\:\mathrm{106Km}/\mathrm{hr},\:\:\:\:\mathrm{64Km}/\mathrm{hr},\:\:\:\:\:\mathrm{94Km}/\mathrm{hr} \\ $$

Question Number 63812    Answers: 0   Comments: 2

A can terminate a work 9 hour earlier than B. A and B terminate that work after 20 hour together. A can terminate that work after .... hour.

$$ \\ $$$${A}\:\:{can}\:{terminate}\:{a}\:{work}\:\:\mathrm{9}\:{hour}\:{earlier} \\ $$$${than}\:{B}. \\ $$$${A}\:\:{and}\:\:{B}\:\:{terminate}\:{that}\:{work}\:\:{after}\:\mathrm{20}\:{hour}\:{together}. \\ $$$${A}\:{can}\:{terminate}\:{that}\:{work}\:{after}\:....\:{hour}. \\ $$$$ \\ $$$$ \\ $$

Question Number 63758    Answers: 0   Comments: 6

Tanmay Sir. Are you ok ?

$$\mathrm{Tanmay}\:\mathrm{Sir}.\:\mathrm{Are}\:\mathrm{you}\:\mathrm{ok}\:? \\ $$

Question Number 63790    Answers: 2   Comments: 0

Question Number 63789    Answers: 0   Comments: 0

Question Number 63788    Answers: 1   Comments: 0

Question Number 63700    Answers: 0   Comments: 0

Question Number 63689    Answers: 0   Comments: 3

Show that if a∣b then an∣bn

$${Show}\:{that}\:\:{if}\:\:{a}\mid{b}\:\:{then}\:{an}\mid{bn} \\ $$

Question Number 63684    Answers: 0   Comments: 0

cot 118

$$\mathrm{cot}\:\mathrm{118} \\ $$

Question Number 63552    Answers: 1   Comments: 1

Calculate ∫_0 ^(1/2) x(√(x^2 +1)) dx+∫_(1/2) ^1 x^2 (√(x^3 +1)) dx+∫_1 ^2 x^3 (√(x^4 +1)) dx+∫_2 ^3 x^4 (√(x^5 +1 ))dx+...+∫_(78) ^(79) x^(80) (√(x^(81) +1)) dx+∫_(79) ^(80) x^(81) (√(x^(82) +1)) dx usingΣ_(n=2) ^(80) ∫_(n−1) ^n x^(n+1) (√(x^(n+2) +1))dx

$${Calculate}\:\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}+\underset{\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\mathrm{1}} {\int}}{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}+\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx}+\underset{\mathrm{2}} {\overset{\mathrm{3}} {\int}}{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{5}} +\mathrm{1}\:}{dx}+...+\underset{\mathrm{78}} {\overset{\mathrm{79}} {\int}}{x}^{\mathrm{80}} \sqrt{{x}^{\mathrm{81}} +\mathrm{1}}\:{dx}+\underset{\mathrm{79}} {\overset{\mathrm{80}} {\int}}{x}^{\mathrm{81}} \sqrt{{x}^{\mathrm{82}} +\mathrm{1}}\:{dx} \\ $$$${using}\underset{{n}=\mathrm{2}} {\overset{\mathrm{80}} {\sum}}\underset{{n}−\mathrm{1}} {\overset{{n}} {\int}}{x}^{{n}+\mathrm{1}} \sqrt{{x}^{{n}+\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 63534    Answers: 1   Comments: 0

find the set of values of x for which y is real if y=(((x−2)(x−1))/(x+2)) , x≠−2, x∈R

$${find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{x}\:{for}\:{which}\:{y}\:{is}\:{real}\:{if}\: \\ $$$$\:{y}=\frac{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{1}\right)}{{x}+\mathrm{2}}\:,\:{x}\neq−\mathrm{2},\:{x}\in\mathbb{R} \\ $$

  Pg 86      Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com