Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 85

Question Number 67697    Answers: 1   Comments: 0

⋓si⋒g ChineseRemainderTheorm ∂etermine polynomial p(x) such that p(x)≡8(mod x+1) p(x)≡−24(mod x+3) p(x)≡6(mod x) p(x)≡0(mod x+2)

$$\Cup\mathrm{si}\Cap\mathrm{g}\:\mathrm{ChineseRemainderTheorm} \\ $$$$\partial\mathrm{etermine}\:\mathrm{polynomial}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{such}\:\mathrm{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv\mathrm{8}\left(\mathrm{mod}\:\mathrm{x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv−\mathrm{24}\left(\mathrm{mod}\:\mathrm{x}+\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv\mathrm{6}\left(\mathrm{mod}\:\mathrm{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{x}+\mathrm{2}\right) \\ $$$$ \\ $$

Question Number 67688    Answers: 0   Comments: 1

A relation R defined by _((x,y)) R_((u,v)) ⇔ v^2 −y^2 = u^2 −x^2 show that R is an equivalent Relation.

$${A}\:{relation}\:\mathbb{R}\:{defined}\:{by}\:\:\:_{\left({x},{y}\right)} {R}_{\left({u},{v}\right)} \:\Leftrightarrow\:\:{v}^{\mathrm{2}} −{y}^{\mathrm{2}} \:=\:{u}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${show}\:{that}\:{R}\:{is}\:{an}\:{equivalent}\:{Relation}. \\ $$

Question Number 67687    Answers: 0   Comments: 3

find the range of values of ∣((x^2 −9)/3_ )∣= ((9−x^2 )/3)

$${find}\:{the}\:{range}\:{of}\:{values}\:{of}\: \\ $$$$\:\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{9}}{\mathrm{3}_{\:} }\mid=\:\frac{\mathrm{9}−{x}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$ \\ $$

Question Number 67686    Answers: 0   Comments: 2

given that the roots of the equation 4x^2 + 6x + 9 =0 are λ and δ where λ = (1 + α^2 +β^2 ) and δ = α^3 + β^3 find an equation whose roots are (1/(αλ)) and (1/(βδ))

$${given}\:{that}\:{the}\:{roots}\:{of}\:{the}\:{equation}\:\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{6}{x}\:+\:\mathrm{9}\:=\mathrm{0}\:{are}\:\:\lambda\:{and}\:\delta\:\:{where}\: \\ $$$$\:\lambda\:=\:\left(\mathrm{1}\:+\:\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right)\:\:{and}\:\:\delta\:=\:\alpha^{\mathrm{3}} \:+\:\beta^{\mathrm{3}} \\ $$$${find}\:{an}\:{equation}\:{whose}\:{roots}\:{are}\: \\ $$$$\:\:\frac{\mathrm{1}}{\alpha\lambda}\:{and}\:\:\frac{\mathrm{1}}{\beta\delta} \\ $$

Question Number 67684    Answers: 0   Comments: 2

given the function f(x) = { ((x^2 , for 0≤ x< 2)),((ax + 3, for 2≤ x < 4)) :} is periodic of period 4, and is continuous. a) Find the value of a. b) Find the valu of f(6) c) sketch the graph for y =f(x). help me please, for the graph i don′t know wbere to put y=x^2 and y = ax + 3 and where do i put a closed dot and an open dot.

$${given}\:{the}\:{function}\: \\ $$$${f}\left({x}\right)\:=\begin{cases}{{x}^{\mathrm{2}} \:\:,\:{for}\:\:\:\mathrm{0}\leqslant\:{x}<\:\mathrm{2}}\\{{ax}\:+\:\mathrm{3},\:{for}\:\:\mathrm{2}\leqslant\:{x}\:<\:\mathrm{4}}\end{cases} \\ $$$${is}\:{periodic}\:{of}\:{period}\:\:\mathrm{4},\:{and}\:{is}\:{continuous}. \\ $$$$\left.{a}\right)\:{Find}\:\:{the}\:{value}\:{of}\:\:{a}. \\ $$$$\left.{b}\right)\:{Find}\:{the}\:{valu}\:{of}\:\:{f}\left(\mathrm{6}\right) \\ $$$$\left.{c}\right)\:{sketch}\:{the}\:{graph}\:{for}\:{y}\:={f}\left({x}\right). \\ $$$${help}\:{me}\:{please},\:{for}\:{the}\:{graph}\:{i}\:{don}'{t}\:{know}\:{wbere}\:{to}\:{put}\:\:{y}={x}^{\mathrm{2}} \:{and}\:{y}\:=\:{ax}\:+\:\mathrm{3}\:{and} \\ $$$${where}\:{do}\:{i}\:{put}\:{a}\:{closed}\:\:{dot}\:{and}\:{an}\:{open}\:{dot}. \\ $$$$ \\ $$

Question Number 67664    Answers: 0   Comments: 2

show that ∃ n ∈ N^(+ ) : sin^n x + cos^n x = 1 and cosh^n x − sinh^n x = 1. Hint: use Induction method.

$${show}\:{that}\:\:\exists\:{n}\:\in\:{N}^{+\:} \::\:\:{sin}^{{n}} {x}\:+\:{cos}^{{n}} {x}\:=\:\mathrm{1}\:{and}\:\:{cosh}^{{n}} {x}\:−\:{sinh}^{{n}} {x}\:=\:\mathrm{1}. \\ $$$$ \\ $$$${Hint}:\:{use}\:{Induction}\:{method}. \\ $$$$ \\ $$

Question Number 67662    Answers: 0   Comments: 2

please explain the fact that ∫(1/x)dx = ln x + k

$${please}\:{explain}\:{the}\:{fact}\:{that}\: \\ $$$$\int\frac{\mathrm{1}}{{x}}{dx}\:=\:{ln}\:{x}\:+\:{k} \\ $$

Question Number 67659    Answers: 0   Comments: 3

Help me obtain the value of e from (1 + (1/n))^n how do i go about it.

$${Help}\:{me}\:{obtain}\:\:\:{the}\:{value}\:{of}\:\:{e}\:{from} \\ $$$$\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{n}}\right)^{{n}} \:\:{how}\:{do}\:{i}\:{go}\:{about}\:{it}. \\ $$

Question Number 67631    Answers: 0   Comments: 3

Can you please tell me, where does this formula come from? And what means the factorial of a non- integer number? π = ((1/2)!)^2 × 4 I′ve verified the above equation with calculator. Thank you

$$ \\ $$$$ \\ $$$$\:\:\:\mathrm{Can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{tell}\:\mathrm{me},\:\mathrm{where}\:\mathrm{does}\:\mathrm{this}\: \\ $$$$\:\:\:\mathrm{formula}\:\mathrm{come}\:\mathrm{from}? \\ $$$$\:\:\:\mathrm{And}\:\mathrm{what}\:\mathrm{means}\:\mathrm{the}\:\mathrm{factorial}\:\mathrm{of}\:\mathrm{a}\:\mathrm{non}- \\ $$$$\:\:\:\mathrm{integer}\:\mathrm{number}? \\ $$$$ \\ $$$$\:\:\:\:\:\:\pi\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}!\right)^{\mathrm{2}} ×\:\mathrm{4} \\ $$$$ \\ $$$$\:\:\:{I}'{ve}\:{verified}\:{the}\:{above}\:{equation}\:{with}\:{calculator}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Thank}\:\mathrm{you} \\ $$$$ \\ $$$$ \\ $$

Question Number 67482    Answers: 0   Comments: 1

I have tried to solve Q#67299 Please see and give critical remarks

$${I}\:{have}\:{tried}\:{to}\:{solve}\:{Q}#\mathrm{67299} \\ $$$${Please}\:{see}\:{and}\:{give}\:{critical}\:{remarks} \\ $$

Question Number 67471    Answers: 0   Comments: 4

Evaluate:∫(√(x(√(x+1)))) dx

$$\boldsymbol{{Evaluate}}:\int\sqrt{{x}\sqrt{{x}+\mathrm{1}}}\:{dx} \\ $$

Question Number 68728    Answers: 0   Comments: 0

dear scientist. i did some research on the energy obtained from the sun any other source by a liquid, of density ρ , velocity v, viscosity η and distance travelled d. i came out with the equation E = k ( vρ η^3 d^2 ) where k is a costant i still need to determine from more experiment. But please i want you guys great people to check if the equation is in confirmity and if atall it is correct so i can do some changes. thanks in advanced dear scientist.

$${dear}\:{scientist}. \\ $$$${i}\:{did}\:{some}\:{research}\:{on}\:{the}\:{energy}\:{obtained}\:{from}\:{the}\:{sun} \\ $$$${any}\:{other}\:{source}\:\:{by}\:{a}\:{liquid},\:{of}\:{density}\:\rho\:,\:{velocity}\:\:{v},\:\:{viscosity}\:\eta\:{and}\:{distance}\: \\ $$$${travelled}\:\:\:{d}. \\ $$$$ \\ $$$${i}\:{came}\:{out}\:{with}\:{the}\:{equation}\: \\ $$$$\:\:\:{E}\:=\:{k}\:\left(\:{v}\rho\:\eta^{\mathrm{3}} \:{d}^{\mathrm{2}} \right) \\ $$$${where}\:\:{k}\:{is}\:{a}\:{costant}\:{i}\:{still}\:{need}\:{to}\:{determine}\:{from}\:{more} \\ $$$${experiment}.\:{But}\:{please}\:{i}\:{want}\:{you}\:{guys}\:\:{great}\:{people}\:{to}\: \\ $$$${check}\:{if}\:{the}\:{equation}\:{is}\:{in}\:{confirmity}\:{and}\:{if}\:{atall}\:{it}\:{is}\:{correct} \\ $$$${so}\:{i}\:{can}\:{do}\:{some}\:{changes}. \\ $$$$ \\ $$$${thanks}\:{in}\:{advanced}\:\:{dear}\:{scientist}. \\ $$$$ \\ $$

Question Number 67299    Answers: 2   Comments: 5

G(x)= (x+1)(x+3)Q(x) + px +q a) Given that G(x) leaves a remainder of 8 and −24 when divided by (x+1) and (x+3) respectively,find the remainder when G(x) is divided by (x+1)(x+3). b) Given that x+2 is a factor of G(x) and that the graph of G(x) passes through the point with coordinates (0,6) find G(x)

$${G}\left({x}\right)=\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right){Q}\left({x}\right)\:+\:{px}\:+{q} \\ $$$$\left.{a}\right)\:{Given}\:{that}\:{G}\left({x}\right)\:{leaves}\:{a}\:{remainder}\:{of}\:\mathrm{8}\:{and}\:−\mathrm{24}\:{when}\:{divided}\:{by}\:\left({x}+\mathrm{1}\right)\:{and}\: \\ $$$$\left({x}+\mathrm{3}\right)\:{respectively},{find}\:{the}\:{remainder}\:{when}\:{G}\left({x}\right)\:{is}\:{divided}\:{by}\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right). \\ $$$$\left.{b}\right)\:\:{Given}\:{that}\:{x}+\mathrm{2}\:{is}\:{a}\:{factor}\:{of}\:{G}\left({x}\right)\:{and}\:{that}\:{the}\:{graph}\:{of}\:{G}\left({x}\right)\:{passes}\:{through} \\ $$$${the}\:{point}\:{with}\:{coordinates}\:\left(\mathrm{0},\mathrm{6}\right)\:{find}\:{G}\left({x}\right) \\ $$

Question Number 67298    Answers: 0   Comments: 2

Find the third degree polynomial which vanishes when x =−1 and x = 2, which has a value 8 when x =0 and leaves a remainder ((16)/3) when divided by 3x + 2.

$${Find}\:\:{the}\:{third}\:{degree}\:{polynomial}\:{which}\:{vanishes}\:{when} \\ $$$${x}\:=−\mathrm{1}\:{and}\:{x}\:=\:\mathrm{2},\:{which}\:{has}\:{a}\:{value}\:\mathrm{8}\:{when}\:{x}\:=\mathrm{0}\:{and}\:{leaves}\:{a}\:{remainder}\:\frac{\mathrm{16}}{\mathrm{3}}\:{when} \\ $$$${divided}\:{by}\:\:\mathrm{3}{x}\:+\:\mathrm{2}. \\ $$

Question Number 67148    Answers: 0   Comments: 6

explicitez la suite u_n definie par la relation; { ((u_0 =0, u_1 =1)),((u_(n+2) =u_(n+1) +u_n ∀n∈∤N)) :} u_n =???????? −calculer la lim _(n→∞) (u_(n+1) /u_n )=??? −montre que Σ_(k=0) ^n u_k =u_(n+2) −1 voila^′

$$\mathrm{explicitez}\:\:\:\mathrm{la}\:\mathrm{suite}\:\mathrm{u}_{\mathrm{n}} \mathrm{definie}\:\mathrm{par}\:\mathrm{la}\:\mathrm{relation}; \\ $$$$\begin{cases}{\mathrm{u}_{\mathrm{0}} =\mathrm{0},\:\mathrm{u}_{\mathrm{1}} =\mathrm{1}}\\{\mathrm{u}_{\mathrm{n}+\mathrm{2}} =\mathrm{u}_{\mathrm{n}+\mathrm{1}} +\mathrm{u}_{\mathrm{n}} \:\:\:\forall\mathrm{n}\in\nmid\boldsymbol{\mathrm{N}}}\end{cases} \\ $$$$\boldsymbol{{u}}_{\boldsymbol{{n}}} =???????? \\ $$$$−\mathrm{calculer}\:\mathrm{la}\:\mathrm{lim}\underset{\mathrm{n}\rightarrow\infty} {\:}\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }=??? \\ $$$$−\mathrm{montre}\:\mathrm{que}\:\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{u}_{\mathrm{k}} =\mathrm{u}_{\mathrm{n}+\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{voila}^{'} \\ $$

Question Number 67004    Answers: 1   Comments: 0

Question Number 66988    Answers: 0   Comments: 0

Question Number 66986    Answers: 0   Comments: 1

Question Number 66985    Answers: 1   Comments: 0

The external length,width and height of an open rectangular container are 41cm,21cm and 15.5cm respectively. The thickness of the material making the container is 5mm.If the container has 8litres of water,calculate the internal height above the water level. Ans:5cm

$$\mathrm{The}\:\mathrm{external}\:\mathrm{length},\mathrm{width}\:\mathrm{and}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{open}\:\mathrm{rectangular}\:\mathrm{container}\:\mathrm{are} \\ $$$$\mathrm{41cm},\mathrm{21cm}\:\mathrm{and}\:\mathrm{15}.\mathrm{5cm}\:\mathrm{respectively}. \\ $$$$\mathrm{The}\:\mathrm{thickness}\:\mathrm{of}\:\mathrm{the}\:\mathrm{material}\:\mathrm{making} \\ $$$$\mathrm{the}\:\mathrm{container}\:\mathrm{is}\:\mathrm{5mm}.\mathrm{If}\:\mathrm{the}\:\mathrm{container} \\ $$$$\mathrm{has}\:\mathrm{8litres}\:\mathrm{of}\:\mathrm{water},\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{internal}\:\mathrm{height}\:\mathrm{above}\:\mathrm{the}\:\mathrm{water}\:\mathrm{level}. \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Ans}:\mathrm{5}{cm} \\ $$

Question Number 66932    Answers: 1   Comments: 0

which of the sequences converges ? 1) a_n = n−(1/n) 2) a_n = ((−1)^n +1)(((n+1)/n))

$${which}\:{of}\:{the}\:{sequences}\:{converges}\:? \\ $$$$\left.\mathrm{1}\right)\:{a}_{{n}} =\:{n}−\frac{\mathrm{1}}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{a}_{{n}} =\:\left(\left(−\mathrm{1}\right)^{{n}} +\mathrm{1}\right)\left(\frac{{n}+\mathrm{1}}{{n}}\right) \\ $$

Question Number 66865    Answers: 1   Comments: 1

A and B are two towns 360km apart. An express bus departs from A at 8a.m and maintains an average speed of 90km/h between A and B. Another bus starts from B also at 8a.m and moves towards A making four stops at four equally spaced points between B and A. Each stop is of duration 5 minutes and the average speed between any two stops is 60km/h. Calculate the distance between the two buses at 10p.m.

$${A}\:{and}\:{B}\:{are}\:{two}\:{towns}\:\mathrm{360}{km}\:{apart}. \\ $$$${An}\:{express}\:{bus}\:{departs}\:{from}\:{A}\:{at} \\ $$$$\mathrm{8}{a}.{m}\:{and}\:{maintains}\:{an}\:{average} \\ $$$${speed}\:{of}\:\mathrm{90}{km}/{h}\:{between}\:{A}\:{and}\:{B}. \\ $$$${Another}\:{bus}\:{starts}\:{from}\:{B}\:{also}\:{at} \\ $$$$\mathrm{8}{a}.{m}\:{and}\:{moves}\:{towards}\:{A}\:{making} \\ $$$${four}\:{stops}\:{at}\:{four}\:{equally}\:{spaced} \\ $$$${points}\:{between}\:{B}\:{and}\:{A}.\:{Each}\:{stop} \\ $$$${is}\:{of}\:{duration}\:\mathrm{5}\:{minutes}\:{and}\:{the} \\ $$$${average}\:{speed}\:{between}\:{any}\:{two}\:{stops} \\ $$$${is}\:\mathrm{60}{km}/{h}.\:{Calculate}\:{the}\:{distance} \\ $$$${between}\:{the}\:{two}\:{buses}\:{at}\:\mathrm{10}{p}.{m}. \\ $$

Question Number 66868    Answers: 0   Comments: 3

A town N is 340km due west of town G and town K is due west of town N. A helicopter Zebra left G for K at 9a.m. Another helicopter Buffalo left N for K at 11a.m. Helicopter Buffalo travelled at an average speed of 20km/h faster than helicopter Zebra. If both helicopters reached K at 12.30p.m, find the speed of helicopter Buffalo.

$${A}\:{town}\:{N}\:{is}\:\mathrm{340}{km}\:{due}\:{west}\:{of}\: \\ $$$${town}\:{G}\:{and}\:{town}\:{K}\:{is}\:{due}\:{west}\: \\ $$$${of}\:{town}\:{N}.\:{A}\:{helicopter}\:{Zebra}\: \\ $$$${left}\:{G}\:{for}\:{K}\:{at}\:\mathrm{9}{a}.{m}.\:{Another}\: \\ $$$${helicopter}\:{Buffalo}\:{left}\:{N}\:{for}\:{K} \\ $$$${at}\:\mathrm{11}{a}.{m}.\:{Helicopter}\:{Buffalo} \\ $$$${travelled}\:{at}\:{an}\:{average}\:{speed}\:{of}\: \\ $$$$\mathrm{20}{km}/{h}\:{faster}\:{than}\:{helicopter} \\ $$$${Zebra}.\:{If}\:{both}\:{helicopters}\:{reached} \\ $$$${K}\:{at}\:\mathrm{12}.\mathrm{30}{p}.{m},\:{find}\:{the}\:{speed}\:{of}\: \\ $$$${helicopter}\:{Buffalo}. \\ $$

Question Number 66856    Answers: 1   Comments: 0

Two towns T and S are 300 km apart. Two buses A and B started from T at the same time travelling towards S. Bus B, travelling at an average speed of 10km/h greater than that of A reached S 1(1/4) hours earlier. (a) Find the average speed of A (b) How far was A from T when B reached S.

$${Two}\:{towns}\:{T}\:{and}\:{S}\:{are}\:\mathrm{300}\:{km}\:{apart}. \\ $$$${Two}\:{buses}\:{A}\:{and}\:{B}\:{started}\:{from} \\ $$$${T}\:{at}\:{the}\:{same}\:{time}\:{travelling}\:{towards} \\ $$$${S}.\:{Bus}\:{B},\:{travelling}\:{at}\:{an}\:{average} \\ $$$${speed}\:{of}\:\mathrm{10}{km}/{h}\:{greater}\:{than}\:{that} \\ $$$${of}\:{A}\:{reached}\:{S}\:\mathrm{1}\frac{\mathrm{1}}{\mathrm{4}}\:{hours}\:{earlier}. \\ $$$$\left({a}\right)\:{Find}\:{the}\:{average}\:{speed}\:{of}\:{A} \\ $$$$\left({b}\right)\:{How}\:{far}\:{was}\:{A}\:{from}\:{T}\:{when} \\ $$$${B}\:{reached}\:{S}. \\ $$

Question Number 66852    Answers: 0   Comments: 3

Question Number 66851    Answers: 2   Comments: 1

Question Number 66849    Answers: 0   Comments: 2

  Pg 80      Pg 81      Pg 82      Pg 83      Pg 84      Pg 85      Pg 86      Pg 87      Pg 88      Pg 89   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com