Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 77

Question Number 76680    Answers: 0   Comments: 4

prove that: ∫_0 ^1 (1−x^7 )^(1/3) dx=∫_0 ^1 (1−x^3 )^(1/7) dx

$${prove}\:{that}: \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{7}}} {dx} \\ $$

Question Number 76579    Answers: 1   Comments: 0

A uniform ladder of weight W and length 2a rest in limiting equilibrium with one end on a rough horizontal ground and the other end on a rough vertical wall. The coefficient of friction between the ladder and the ground and between the ladder and the wall are respectively μ and λ . If the ladder makes an angle θ with the ground where tan θ = (5/(12)), a) show that 5μ + 6λμ − 6 = 0. b) find the value of λ and μ given that λμ =(1/2).

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{ladder}\:\mathrm{of}\:\mathrm{weight}\:{W}\:\mathrm{and}\:\mathrm{length} \\ $$$$\mathrm{2}{a}\:\mathrm{rest}\:\mathrm{in}\:\mathrm{limiting}\:\mathrm{equilibrium}\:\mathrm{with}\:\mathrm{one}\: \\ $$$$\mathrm{end}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{horizontal}\:\mathrm{ground}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{other}\:\mathrm{end}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{vertical}\:\mathrm{wall}. \\ $$$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{ladder} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{and}\:\mathrm{between}\:\mathrm{the}\:\mathrm{ladder}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{wall}\:\mathrm{are}\:\mathrm{respectively}\:\mu\:\mathrm{and}\:\lambda\:.\:\mathrm{If}\:\mathrm{the}\:\mathrm{ladder} \\ $$$$\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{where}\:\mathrm{tan}\:\theta\:=\:\frac{\mathrm{5}}{\mathrm{12}}, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{show}\:\mathrm{that}\:\mathrm{5}\mu\:+\:\mathrm{6}\lambda\mu\:−\:\mathrm{6}\:=\:\mathrm{0}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\lambda\:\mathrm{and}\:\mu\:\mathrm{given}\:\mathrm{that}\:\lambda\mu\:=\frac{\mathrm{1}}{\mathrm{2}}.\: \\ $$

Question Number 76577    Answers: 1   Comments: 0

given a sequence defined by {((3n)/(2n+ 5))}_(n=1) ^∞ , does this sequence converge or diverge, explain

$$\:{given}\:{a}\:{sequence}\:{defined}\:{by}\:\:\left\{\frac{\mathrm{3}{n}}{\mathrm{2}{n}+\:\mathrm{5}}\right\}_{{n}=\mathrm{1}} ^{\infty} ,\:{does}\:{this}\: \\ $$$${sequence}\:{converge}\:{or}\:{diverge},\:{explain} \\ $$

Question Number 76404    Answers: 0   Comments: 2

Hello have nice end of year good bless you all i respond note in y re message becsuse i have so many problemes that mack me feel no pleasur any more to do somthing i think its importante to say it i will back Soon i hop so Sorry for my English

$$\mathrm{Hello}\:\mathrm{have}\:\mathrm{nice}\:\mathrm{end}\:\mathrm{of}\:\mathrm{year}\:\mathrm{good}\:\mathrm{bless}\:\mathrm{you} \\ $$$$\mathrm{all}\:\mathrm{i}\:\mathrm{respond}\:\mathrm{note}\:\mathrm{in}\:\mathrm{y}\:\mathrm{re}\:\mathrm{message}\:\mathrm{becsuse}\:\mathrm{i}\:\mathrm{have}\:\mathrm{so}\:\mathrm{many}\:\mathrm{problemes} \\ $$$$\mathrm{that}\:\mathrm{mack}\:\mathrm{me}\:\mathrm{feel}\:\mathrm{no}\:\mathrm{pleasur}\:\mathrm{any}\:\mathrm{more}\:\mathrm{to}\:\mathrm{do}\:\mathrm{somthing} \\ $$$$\mathrm{i}\:\mathrm{think}\:\mathrm{its}\:\mathrm{importante}\:\mathrm{to}\:\mathrm{say}\:\mathrm{it}\:\mathrm{i}\:\mathrm{will}\:\mathrm{back}\:\mathrm{Soon}\:\mathrm{i}\:\mathrm{hop}\:\mathrm{so}\:\:\mathrm{Sorry}\:\mathrm{for} \\ $$$$\mathrm{my}\:\mathrm{English} \\ $$

Question Number 76384    Answers: 0   Comments: 1

$$ \\ $$

Question Number 76368    Answers: 3   Comments: 5

prove that 1. Σ_(r=1) ^n r = (1/2)n(n+1) 2. Σ_(r=1) ^n r^2 = (1/6)n(n+1)(2n + 1) 3. Σ_(r=1) ^n r^3 = (1/4)n^2 (n + 1)^2

$${prove}\:{that} \\ $$$$\mathrm{1}.\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:{r}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right) \\ $$$$\mathrm{2}.\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:{r}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{6}}{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}\:+\:\mathrm{1}\right) \\ $$$$\mathrm{3}.\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{3}} =\:\frac{\mathrm{1}}{\mathrm{4}}{n}^{\mathrm{2}} \left({n}\:+\:\mathrm{1}\right)^{\mathrm{2}} \\ $$

Question Number 76367    Answers: 0   Comments: 4

prove that Σ_(r=1) ^∞ (1/r^2 ) = (π^2 /6)

$${prove}\:{that}\:\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Question Number 76229    Answers: 1   Comments: 0

Let P(x) be polynomial in x with integral coefficients. If n is a solution of P(x)≡0(mod n) , and a≡b(mod n), prove that b is also a solution.

$${Let}\:{P}\left({x}\right)\:{be}\:{polynomial}\:{in}\:{x}\:{with}\:{integral} \\ $$$${coefficients}.\:{If}\:{n}\:{is}\:{a}\:{solution}\:{of}\: \\ $$$${P}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right)\:,\:{and}\:{a}\equiv{b}\left({mod}\:{n}\right), \\ $$$${prove}\:{that}\:{b}\:{is}\:{also}\:{a}\:{solution}. \\ $$

Question Number 76232    Answers: 2   Comments: 2

how do we find ∫_0 ^(π/2) sinh^(−1) x dx and ∫_0 ^(π/2) cosh^(−1) xdx

$${how}\:{do}\:{we}\:{find} \\ $$$$\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:{sinh}^{−\mathrm{1}} {x}\:{dx}\:{and}\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cosh}\:^{−\mathrm{1}} {xdx} \\ $$

Question Number 76110    Answers: 1   Comments: 0

hello solve in R tanx>(√3) please explain me if possible.

$${hello}\:\mathrm{solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{tan}{x}>\sqrt{\mathrm{3}} \\ $$$${please}\:{explain}\:{me}\:{if}\:{possible}. \\ $$

Question Number 76037    Answers: 1   Comments: 0

Prove That sin 3°sin 39°sin 75°=sin 9°sin 24°sin 30°

$${Prove}\:{That} \\ $$$$\mathrm{sin}\:\mathrm{3}°\mathrm{sin}\:\mathrm{39}°\mathrm{sin}\:\mathrm{75}°=\mathrm{sin}\:\mathrm{9}°\mathrm{sin}\:\mathrm{24}°\mathrm{sin}\:\mathrm{30}° \\ $$

Question Number 76012    Answers: 1   Comments: 0

show that 1−3sin^2 xcos^2 x=(5/8)+(3/8)cos4x

$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}=\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{{x}} \\ $$

Question Number 75954    Answers: 0   Comments: 2

prove that (ann(I),+,.) identical in (R,+,.)?

$${prove}\:{that}\:\left({ann}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$

Question Number 75953    Answers: 0   Comments: 0

prove that (C(I),+,.) identical in (R,+,.)?

$${prove}\:{that}\:\left({C}\left({I}\right),+,.\right)\:{identical}\:{in}\:\left({R},+,.\right)? \\ $$

Question Number 75952    Answers: 0   Comments: 1

are this (cent(R),+,.)identical in the ring (R,+,.) ? pleas sir are you can help me?

$${are}\:{this}\:\left({cent}\left({R}\right),+,.\right){identical}\:{in}\:{the}\:{ring}\:\left({R},+,.\right)\:? \\ $$$${pleas}\:{sir}\:{are}\:{you}\:{can}\:{help}\:{me}? \\ $$

Question Number 75879    Answers: 1   Comments: 0

Question Number 75847    Answers: 0   Comments: 2

{ ((((tgx−tgy)/(1−tgx.tgy))=tg(x/2))),(( ((tgx+tgy)/(1+tgxtgy))=tg(y/2))) :}

$$\begin{cases}{\frac{\boldsymbol{\mathrm{tgx}}−\boldsymbol{\mathrm{tgy}}}{\mathrm{1}−\boldsymbol{\mathrm{tgx}}.\boldsymbol{\mathrm{tgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}}\\{\:\:\frac{\boldsymbol{\mathrm{tgx}}+\boldsymbol{\mathrm{tgy}}}{\mathrm{1}+\boldsymbol{\mathrm{tgxtgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{y}}}{\mathrm{2}}}\end{cases} \\ $$

Question Number 75435    Answers: 0   Comments: 4

solve the integral with Residue theorem. ∫_0 ^(2π) ((3 dθ)/(9 +sin^2 θ))

$${solve}\:{the}\:{integral}\:{with}\:{Residue}\:{theorem}. \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\mathrm{3}\:{d}\theta}{\mathrm{9}\:+\mathrm{sin}^{\mathrm{2}} \theta} \\ $$

Question Number 75351    Answers: 1   Comments: 0

Question Number 75321    Answers: 0   Comments: 0

lim_(x→∞) ((𝚷_(k=0) ^n ((n),(k) )))^(1/(n(n+1)))

$$ \\ $$$$\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{l}\boldsymbol{\mathrm{im}}}\:\sqrt[{\boldsymbol{{n}}\left(\boldsymbol{{n}}+\mathrm{1}\right)}]{\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\prod}}}\begin{pmatrix}{\boldsymbol{{n}}}\\{\boldsymbol{{k}}}\end{pmatrix}} \\ $$

Question Number 75319    Answers: 0   Comments: 0

Question Number 75318    Answers: 0   Comments: 6

Question Number 75256    Answers: 0   Comments: 0

if B⊆A,A⋒B′={1,4,5} and A⊔B={1,2,3,4,5,6}, find B.

$${if}\:{B}\subseteq{A},{A}\Cap{B}'=\left\{\mathrm{1},\mathrm{4},\mathrm{5}\right\}\:{and}\:{A}\sqcup{B}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6}\right\},\:{find}\:{B}. \\ $$

Question Number 75242    Answers: 2   Comments: 0

Find th greatest coefficients in the expansion of (3a+5b)^(18) 2)If three consecutive coefficient of (1+x)^n are 28,56,70. find the value of n

$${Find}\:{th}\:{greatest}\:{coefficients} \\ $$$${in}\:{the}\:{expansion}\:{of} \\ $$$$\left(\mathrm{3}{a}+\mathrm{5}{b}\right)^{\mathrm{18}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right){If}\:{three}\:{consecutive}\: \\ $$$${coefficient}\:{of}\:\left(\mathrm{1}+{x}\right)^{{n}} \:{are}\:\mathrm{28},\mathrm{56},\mathrm{70}. \\ $$$${find}\:{the}\:{value}\:{of}\:{n} \\ $$$$ \\ $$

Question Number 75193    Answers: 2   Comments: 0

it is given that cos(π/5)=((1+(√5))/4) calculate the exact value of cos((2π)/5) and cos((3π)/5)

$${it}\:{is}\:{given}\:{that}\:{cos}\frac{\pi}{\mathrm{5}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$${calculate}\:{the}\:{exact}\:{val}\mathrm{ue}\:{of}\: \\ $$$${cos}\frac{\mathrm{2}\pi}{\mathrm{5}}\:\:\:{and}\:\:{cos}\frac{\mathrm{3}\pi}{\mathrm{5}} \\ $$

Question Number 75178    Answers: 1   Comments: 0

givn that z = 1−i(√3) express z in the form z = r(cosθ + isinθ), hence express z^7 in the form re^(iθ)

$${givn}\:{that}\:{z}\:=\:\mathrm{1}−{i}\sqrt{\mathrm{3}}\:{express}\:{z}\:{in}\:{the}\:{form}\: \\ $$$$\:{z}\:=\:{r}\left({cos}\theta\:+\:{isin}\theta\right),\:{hence}\:{express} \\ $$$${z}^{\mathrm{7}} \:{in}\:{the}\:{form}\:{re}^{{i}\theta} \\ $$

  Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com