Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 75

Question Number 78689    Answers: 0   Comments: 0

Question Number 78342    Answers: 0   Comments: 0

sppose that (R,+,.)be aring and we have the ring (R×Z,+^(′ ) ,.^′ ) prove that (R×0,+^′ ,.′) it was ideal in (R×Z,+^′ ,.^′ ) and prove (0×Z,+,.)be isomorphic in (Z,+,.) and if a∈R identity element (a^2 =a)prove that (−a,1)be identity element in the ring (R×Z,+^′ ,.^′ ) pleas sir help me am neding this pleas?

$${sppose}\:{that}\:\left({R},+,.\right){be}\:{aring}\:{and}\:{we}\:{have}\:{the}\:{ring}\:\left({R}×{Z},+^{'\:} ,.^{'} \right)\:{prove}\:{that}\:\left({R}×\mathrm{0},+^{'} ,.'\right)\:{it}\:{was}\:{ideal}\:{in}\:\left({R}×{Z},+^{'} ,.^{'} \right) \\ $$$${and}\:{prove}\:\left(\mathrm{0}×{Z},+,.\right){be}\:{isomorphic}\:{in}\:\left({Z},+,.\right) \\ $$$${and}\:{if}\:{a}\in{R}\:{identity}\:{element}\:\left({a}^{\mathrm{2}} ={a}\right){prove}\:{that}\:\left(−{a},\mathrm{1}\right){be}\:{identity}\:{element}\:{in}\:{the}\:{ring}\:\left({R}×{Z},+^{'} ,.^{'} \right) \\ $$$${pleas}\:{sir}\:{help}\:{me}\:{am}\:{neding}\:{this}\:{pleas}? \\ $$

Question Number 78332    Answers: 0   Comments: 2

Find the values of k and n for which x^3 and higher powers of x are negligeble given that (1+kx)^n =1+2x+6x^2 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{k}\:\mathrm{and}\:\mathrm{n}\:\mathrm{for}\:\mathrm{which}\:\mathrm{x}^{\mathrm{3}} \mathrm{and}\:\mathrm{higher}\:\mathrm{powers}\:\mathrm{of}\:\mathrm{x}\:\mathrm{are}\:\mathrm{negligeble} \\ $$$$\mathrm{given}\:\mathrm{that}\:\left(\mathrm{1}+\mathrm{kx}\right)^{\mathrm{n}} =\mathrm{1}+\mathrm{2x}+\mathrm{6x}^{\mathrm{2}} . \\ $$

Question Number 78314    Answers: 1   Comments: 1

resolve {_(logx_y =logy_x ) ^(x^y =y^x )

$${resolve} \\ $$$$\left\{_{{logx}_{{y}} ={logy}_{{x}} } ^{{x}^{{y}} ={y}^{{x}} } \right. \\ $$

Question Number 78256    Answers: 0   Comments: 0

Evaluate Σa_1 a_2 a_3 as a function of a_i

$$\mathrm{Evaluate}\:\Sigma\mathrm{a}_{\mathrm{1}} \mathrm{a}_{\mathrm{2}} \mathrm{a}_{\mathrm{3}} \: \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\:\mathrm{a}_{\mathrm{i}} \: \\ $$$$ \\ $$$$ \\ $$

Question Number 78161    Answers: 1   Comments: 0

Question Number 78160    Answers: 0   Comments: 1

find the term independent of x in [ ((x−1)/x)]^9

$$\mathrm{find}\:\mathrm{the}\:\mathrm{term}\:\mathrm{independent}\:\mathrm{of}\:\mathrm{x}\:\mathrm{in} \\ $$$$\:\:\left[\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}\right]^{\mathrm{9}} \\ $$

Question Number 78156    Answers: 0   Comments: 1

Given that u_(n + 1) = (a_n /2) + 5 evalatuate lim_(x→∞) a_n deduce if a_(n ) is convergent or divergent.

$$\mathrm{Given}\:\mathrm{that}\:{u}_{{n}\:+\:\mathrm{1}} =\:\frac{{a}_{{n}} }{\mathrm{2}}\:+\:\mathrm{5}\:\:\: \\ $$$${evalatuate}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \\ $$$${deduce}\:{if}\:{a}_{{n}\:} \:{is}\:{convergent}\:{or}\:{divergent}. \\ $$

Question Number 78075    Answers: 0   Comments: 5

expressing P(x) = ((x^2 + x)/((x−3)(x^2 −2))) in partial fractions gives A. (A/((x−3))) + ((Bx + C)/((x^2 −2))) B. (A/(x−3)) + (B/(x−2)) + (C/(x+2)) C. (A/(x−3)) + (B/(x−(√2))) + (C/(x + (√2))) D. ((Ax + B)/(x−3)) + (C/(x^2 −2))

$${expressing}\:\:{P}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:+\:{x}}{\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\:{in}\:{partial}\:{fractions}\:{gives} \\ $$$${A}.\:\:\frac{{A}}{\left({x}−\mathrm{3}\right)}\:+\:\frac{{Bx}\:+\:{C}}{\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\: \\ $$$${B}.\:\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\mathrm{2}}\:+\:\frac{{C}}{{x}+\mathrm{2}} \\ $$$${C}.\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\sqrt{\mathrm{2}}}\:+\:\frac{{C}}{{x}\:+\:\sqrt{\mathrm{2}}} \\ $$$${D}.\:\frac{{Ax}\:+\:{B}}{{x}−\mathrm{3}}\:+\:\frac{{C}}{{x}^{\mathrm{2}} −\mathrm{2}} \\ $$

Question Number 78074    Answers: 2   Comments: 0

evaluate ∫_1 ^4 sinh^(−1) x dx and ∫_1 ^(1/2) tanh^(−1) x dx

$${evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}\:^{−\mathrm{1}} {x}\:{dx}\:\:{and}\:\underset{\mathrm{1}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\mathrm{tanh}\:^{−\mathrm{1}} {x}\:{dx} \\ $$

Question Number 77872    Answers: 2   Comments: 6

show that f(x)=2r^3 +5x−1 has a zero in the interval [0.1].

$${show}\:{that}\:{f}\left({x}\right)=\mathrm{2}{r}^{\mathrm{3}} +\mathrm{5}{x}−\mathrm{1}\:{has}\:{a}\:{zero}\:{in}\:{the}\:{interval}\:\left[\mathrm{0}.\mathrm{1}\right]. \\ $$

Question Number 77845    Answers: 0   Comments: 0

In the equation B=μ_0 H×μ_0 M why is the polarization of the vacuum accounted for by constant μ_0 if the vacuum is absolutely empty?

$$\boldsymbol{\mathrm{I}}\mathrm{n}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\boldsymbol{\mathrm{B}}=\mu_{\mathrm{0}} \boldsymbol{\mathrm{H}}×\mu_{\mathrm{0}} \boldsymbol{\mathrm{M}}\: \\ $$$$\mathrm{why}\:\mathrm{is}\:\mathrm{the}\:\mathrm{polarization}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vacuum}\: \\ $$$$\mathrm{accounted}\:\mathrm{for}\:\mathrm{by}\: \\ $$$$\mathrm{constant}\:\mu_{\mathrm{0}} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{vacuum}\:\mathrm{is}\:\mathrm{absolutely}\:\mathrm{empty}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 77803    Answers: 1   Comments: 0

solve (4x^2 +4x+1)y′′−(12x+6)y′−8x^3 −1=12x^2 −16y+6x

$${solve} \\ $$$$\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\right){y}''−\left(\mathrm{12}{x}+\mathrm{6}\right){y}'−\mathrm{8}{x}^{\mathrm{3}} −\mathrm{1}=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{16}{y}+\mathrm{6}{x} \\ $$

Question Number 77802    Answers: 0   Comments: 0

Question Number 77772    Answers: 0   Comments: 3

Question Number 77722    Answers: 1   Comments: 2

how to find n−term from S_n =n^2 +7n+2 ?

$${how}\:{to}\:{find}\: \\ $$$${n}−{term}\:{from} \\ $$$${S}_{{n}} ={n}^{\mathrm{2}} +\mathrm{7}{n}+\mathrm{2}\:? \\ $$

Question Number 77631    Answers: 1   Comments: 0

x^(log_3 (2)) =(√x)+1

$${x}^{{log}_{\mathrm{3}} \left(\mathrm{2}\right)} =\sqrt{{x}}+\mathrm{1} \\ $$

Question Number 77573    Answers: 0   Comments: 2

xln x =((143851)/(40000)) solve for x ⇒ nice surprise

$${x}\mathrm{ln}\:{x}\:=\frac{\mathrm{143851}}{\mathrm{40000}} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x}\:\Rightarrow\:\mathrm{nice}\:\mathrm{surprise} \\ $$

Question Number 77336    Answers: 0   Comments: 2

make x subject of formula x^y^x + 8x = y

$${make}\:\boldsymbol{{x}}\:{subject}\:{of}\:{formula} \\ $$$$ \\ $$$$\boldsymbol{{x}}^{\boldsymbol{{y}}^{\boldsymbol{{x}}} } \:+\:\mathrm{8}\boldsymbol{{x}}\:\:=\:\:\boldsymbol{{y}} \\ $$

Question Number 77186    Answers: 1   Comments: 0

given { ((3^y −1= (6/2^x ))),(((3)^(y/x) = 2 )) :} find (1/x)+(1/y).

$$\mathrm{given}\: \\ $$$$\begin{cases}{\mathrm{3}^{\mathrm{y}} −\mathrm{1}=\:\frac{\mathrm{6}}{\mathrm{2}^{\mathrm{x}} }}\\{\left(\mathrm{3}\right)^{\frac{\mathrm{y}}{\mathrm{x}}} \:=\:\mathrm{2}\:}\end{cases}\:\:\mathrm{find}\:\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}. \\ $$

Question Number 77180    Answers: 1   Comments: 0

given a quadratic equation 3x^2 −x+(t^2 −4t+3)=0 has roots sin α and cos α. find the value (√(t^2 −4t+5)) .

$$ \\ $$$$ \\ $$$$\mathrm{given}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{equation}\: \\ $$$$\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{3}\right)=\mathrm{0}\:\mathrm{has} \\ $$$$\mathrm{roots}\:\mathrm{sin}\:\alpha\:\mathrm{and}\:\mathrm{cos}\:\alpha.\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{5}}\:. \\ $$

Question Number 77160    Answers: 1   Comments: 1

Question Number 77149    Answers: 0   Comments: 2

Any reference to a book or video that coould help me solve Differential equations? please help

$$\mathrm{Any}\:\mathrm{reference}\:\mathrm{to}\:\mathrm{a}\:\mathrm{book}\:\mathrm{or}\:\mathrm{video} \\ $$$$\mathrm{that}\:\mathrm{coould}\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{Differential}\:\mathrm{equations}?\: \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$

Question Number 77147    Answers: 0   Comments: 1

Σ_(r=1) ^∞ (1/r^k ) is divergent for: A. k ≤ 1 B. k > 2 C. k ≤ 2 D. 0 ≤ k < 2

$$\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{r}^{{k}} }\:{is}\:{divergent}\:{for}: \\ $$$${A}.\:{k}\:\leqslant\:\mathrm{1} \\ $$$${B}.\:{k}\:>\:\mathrm{2} \\ $$$${C}.\:{k}\:\leqslant\:\mathrm{2} \\ $$$${D}.\:\mathrm{0}\:\leqslant\:{k}\:<\:\mathrm{2} \\ $$

Question Number 76973    Answers: 2   Comments: 0

In a ABC triangle the side a=6 and c^2 −b^2 =66. Calculate the projections of sides b and c on a.

$${In}\:{a}\:{ABC}\:{triangle}\:{the}\:{side}\:\boldsymbol{{a}}=\mathrm{6}\:{and} \\ $$$$\boldsymbol{{c}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} =\mathrm{66}.\:{Calculate}\:{the}\:{projections} \\ $$$${of}\:{sides}\:\boldsymbol{{b}}\:{and}\:\boldsymbol{{c}}\:{on}\:\boldsymbol{{a}}. \\ $$

Question Number 76922    Answers: 0   Comments: 1

  Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com