Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 72

Question Number 83604    Answers: 0   Comments: 7

need help. When typing with microsoft word i face some difficulties like when typing lim_(x→0) f(x) it turns to lim_(x→0) f(x) and Σ_(r=0) ^n a_n turns to Σ_(r=0) ^n a_n please how do i rectify this problem? and any suggestion on a better application to type my maths papers? thanks in advance.

needhelp.Whentypingwithmicrosoftwordifacesomedifficultieslikewhentypinglimx0f(x)itturnstolimx0f(x)andnr=0anturnstor=0nanpleasehowdoirectifythisproblem?andanysuggestiononabetterapplicationtotypemymathspapers?thanksinadvance.

Question Number 83381    Answers: 0   Comments: 0

Given that the function f(x) = x^3 is differentiable in the interval (−2,2) us the mean value theorem to find the value of x for which the tangent to the curve is parrallel to the chord through the points (−2,8) and (2,8).

Giventhatthefunctionf(x)=x3isdifferentiableintheinterval(2,2)usthemeanvaluetheoremtofindthevalueofxforwhichthetangenttothecurveisparralleltothechordthroughthepoints(2,8)and(2,8).

Question Number 83297    Answers: 1   Comments: 1

Write down a series expansion for ln [((1−2x)/((1+2x)^2 ))] in ascending powers of x up to and including the term in x^4 . if x is small that terms in x^2 and higher powers are negleted show that (((1−2x)/(1+2x)))^(1/(2x)) ≅ (1 + x)e^(−3)

Writedownaseriesexpansionforln[12x(1+2x)2]inascendingpowersofxuptoandincludingtheterminx4.ifxissmallthattermsinx2andhigherpowersarenegletedshowthat(12x1+2x)12x(1+x)e3

Question Number 83296    Answers: 0   Comments: 2

Obtain a maclaurin expansion for a) e^(cos x ) b) e^(cos^2 x)

Obtainamaclaurinexpansionfora)ecosxb)ecos2x

Question Number 83205    Answers: 0   Comments: 2

∫_0 ^(ln2) (1/(cosh(x + ln4)))dx =

0ln21cosh(x+ln4)dx=

Question Number 83202    Answers: 0   Comments: 4

find the first 4 terms in the maclaurin[ series expansion for ln (1 + 3x) hence show that if x^2 and higher powers of x are negleted, then (1 + 3x)^(3/x) = e^6 (1 −9x)

findthefirst4termsinthemaclaurin[seriesexpansionforln(1+3x)henceshowthatifx2andhigherpowersofxarenegleted,then(1+3x)3x=e6(19x)

Question Number 82929    Answers: 2   Comments: 0

if 2B+A=45° show that; tan B= ((1−2tanA−tan^2 A)/(1+2tanA−tan^2 A))

if2B+A=45°showthat;tanB=12tanAtan2A1+2tanAtan2A

Question Number 82886    Answers: 0   Comments: 2

prove (tanx+cot^2 x)^2 =sex^2 x+cosec^2 x

prove(tanx+cot2x)2=sex2x+cosec2x

Question Number 82867    Answers: 0   Comments: 3

hello prove that ∫_0 ^(+∞) sin(x^4 )dx=sin((π/8))∫_0 ^(+∞) e^(−x^4 ) dx? verry nice day Good Bless You

helloprovethat0+sin(x4)dx=sin(π8)0+ex4dx?verrynicedayGoodBlessYou

Question Number 82729    Answers: 1   Comments: 2

Question Number 82721    Answers: 1   Comments: 2

show that ∫xe^(−x^6 ) sin(x^3 ) dx=((Γ((5/6)))/3) 1F1[(5/6);(3/2);((−1)/4)]

showthatxex6sin(x3)dx=Γ(56)31F1[56;32;14]

Question Number 82639    Answers: 0   Comments: 3

Question Number 82616    Answers: 0   Comments: 0

Find the normalization constant ψ_((φ,θ)) =Ne^(iφ) sinθ

Findthenormalizationconstantψ(ϕ,θ)=Neiϕsinθ

Question Number 82583    Answers: 0   Comments: 0

Question Number 82564    Answers: 0   Comments: 0

Question Number 82497    Answers: 0   Comments: 0

Question Number 82415    Answers: 0   Comments: 1

Question Number 82387    Answers: 0   Comments: 0

Question Number 82386    Answers: 0   Comments: 0

Question Number 82358    Answers: 0   Comments: 3

Show that: a_n = − rω^2 , show clearly how you arrive at your result.

Showthat:an=rω2,showclearlyhowyouarriveatyourresult.

Question Number 82285    Answers: 0   Comments: 0

Question Number 82176    Answers: 0   Comments: 3

Question Number 82138    Answers: 0   Comments: 1

Question Number 82110    Answers: 0   Comments: 0

Question Number 82084    Answers: 0   Comments: 2

Question Number 82034    Answers: 0   Comments: 1

Prove by maths induction tbat n^5 − n^3 is divisible by 24.

Provebymathsinductiontbatn5n3isdivisibleby24.

  Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com