Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 71

Question Number 85279    Answers: 3   Comments: 0

who can help write out the mechanism for the reaction C_6 H_6 →_(HNO_3 ) ^(H_2 SO_4 ) C_6 H_5 NO_2

$$\mathrm{who}\:\mathrm{can}\:\mathrm{help}\:\mathrm{write}\:\mathrm{out}\:\mathrm{the}\:\mathrm{mechanism}\:\mathrm{for}\:\mathrm{the}\: \\ $$$$\mathrm{reaction} \\ $$$$\:\:\:\mathrm{C}_{\mathrm{6}} \mathrm{H}_{\mathrm{6}} \:\underset{\mathrm{HNO}_{\mathrm{3}} } {\overset{\mathrm{H}_{\mathrm{2}} \mathrm{SO}_{\mathrm{4}} } {\rightarrow}}\:\:\mathrm{C}_{\mathrm{6}} \mathrm{H}_{\mathrm{5}} \mathrm{NO}_{\mathrm{2}} \\ $$

Question Number 85262    Answers: 1   Comments: 6

find the centre of symmetry of the curve y = (1/(x + 2))

$$\mathrm{find}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:\:\:{y}\:=\:\frac{\mathrm{1}}{{x}\:+\:\mathrm{2}} \\ $$

Question Number 85222    Answers: 0   Comments: 3

In C++ What is the sections doing ? and What is the output from the sections below ? a. int p=o; for (int i=1; i<=30; i++){ if (i%5==0) p+=i; } cout<<p<<endl; b. int count=2; int g=0; while (count<=50){ g=count; cout<<g<<endl; count +=2; } cout<<count<<endl;

$$\mathrm{In}\:\mathrm{C}++ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sections}\:\mathrm{doing}\:?\:\mathrm{and} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{output}\:\mathrm{from}\:\mathrm{the}\:\mathrm{sections}\: \\ $$$$\mathrm{below}\:? \\ $$$$\mathrm{a}.\:\mathrm{int}\:\mathrm{p}=\mathrm{o}; \\ $$$$\:\:\:\:\:\mathrm{for}\:\left(\mathrm{int}\:\mathrm{i}=\mathrm{1};\:\mathrm{i}<=\mathrm{30};\:\mathrm{i}++\right)\left\{\right. \\ $$$$\:\:\:\:\:\mathrm{if}\:\left(\mathrm{i\%5}==\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\mathrm{p}+=\mathrm{i};\:\: \\ $$$$\left.\:\:\:\:\:\:\:\right\} \\ $$$$\:\:\:\:\:\:\:\mathrm{cout}<<\mathrm{p}<<\mathrm{endl}; \\ $$$$ \\ $$$$ \\ $$$$\mathrm{b}.\:\:\mathrm{int}\:\mathrm{count}=\mathrm{2}; \\ $$$$\:\:\:\:\:\:\mathrm{int}\:\mathrm{g}=\mathrm{0}; \\ $$$$\:\:\:\:\:\:\mathrm{while}\:\left(\mathrm{count}<=\mathrm{50}\right)\left\{\right. \\ $$$$\:\:\:\:\:\:\mathrm{g}=\mathrm{count}; \\ $$$$\:\:\:\:\:\:\mathrm{cout}<<\mathrm{g}<<\mathrm{endl}; \\ $$$$\:\:\:\:\:\:\mathrm{count}\:+=\mathrm{2}; \\ $$$$\left.\:\:\:\:\:\:\:\right\} \\ $$$$\:\:\:\:\:\:\:\mathrm{cout}<<\mathrm{count}<<\mathrm{endl}; \\ $$

Question Number 85142    Answers: 1   Comments: 0

show that ∫_0 ^n [x^2 ]dx =n(n^2 −1)−Σ_(k=1) ^(n^2 −1) (√k)

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{{n}} \left[{x}^{\mathrm{2}} \right]{dx}\:={n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{n}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{k}}\: \\ $$

Question Number 85131    Answers: 0   Comments: 4

what procedure will you use to find the inverse of A = ((2,1,9),(1,5,1),(3,0,3) )

$$\mathrm{what}\:\mathrm{procedure}\:\mathrm{will}\:\mathrm{you}\:\mathrm{use}\:\mathrm{to}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\:\mathrm{A}\:=\:\begin{pmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{9}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$

Question Number 85129    Answers: 0   Comments: 2

lim_(x→e) [∫_0 ^e ((1/x))dx] =?

$$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\left[\underset{\mathrm{0}} {\overset{{e}} {\int}}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right]\:=? \\ $$

Question Number 85127    Answers: 1   Comments: 4

evaluate: lim_(x→0) (√x) ln(sin x)

$$\mathrm{evaluate}: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{x}}\:\mathrm{ln}\left(\mathrm{sin}\:{x}\right) \\ $$$$ \\ $$

Question Number 85083    Answers: 0   Comments: 1

a^3 −b^3 =...?

$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =...? \\ $$

Question Number 85020    Answers: 0   Comments: 4

solve integration ∫_1 ^2 x d⌊x^2 ⌋

$${solve}\:{integration} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} {x}\:{d}\lfloor{x}^{\mathrm{2}} \rfloor \\ $$

Question Number 85003    Answers: 1   Comments: 7

x≤[x]<x+1 is that right if (x) was negative

$${x}\leqslant\left[{x}\right]<{x}+\mathrm{1} \\ $$$${is}\:{that}\:{right}\:{if}\:\left({x}\right)\:{was}\:{negative} \\ $$

Question Number 84997    Answers: 0   Comments: 2

log_(x/2) x^2 −log_(16x) x^3 +40log_(4x) (√x)=0

$${log}_{\frac{{x}}{\mathrm{2}}} {x}^{\mathrm{2}} −{log}_{\mathrm{16}{x}} {x}^{\mathrm{3}} +\mathrm{40}{log}_{\mathrm{4}{x}} \sqrt{{x}}=\mathrm{0} \\ $$

Question Number 84890    Answers: 0   Comments: 3

If we have : y = e^x What is : (d/dy)e^x = ... If we derivate with y... Please...

$$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\::\:\:\:\:\:{y}\:=\:{e}^{{x}} \\ $$$$ \\ $$$${W}\mathrm{hat}\:\mathrm{is}\::\:\:\:\frac{\mathrm{d}}{\mathrm{d}{y}}{e}^{{x}} \:=\:... \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{derivate}\:\mathrm{with}\:{y}... \\ $$$$ \\ $$$$\mathrm{Please}... \\ $$

Question Number 84814    Answers: 0   Comments: 1

1.Finx

$$\mathrm{1}.{Finx} \\ $$

Question Number 84740    Answers: 1   Comments: 5

find the remainder when −18 is divided by 4

$$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:−\mathrm{18}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{4} \\ $$

Question Number 84739    Answers: 1   Comments: 0

find the unit digit in the number 15^(1789) + 17^(1789) + 19^(1789)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{unit}\:\mathrm{digit}\:\mathrm{in}\:\mathrm{the}\:\mathrm{number} \\ $$$$\:\mathrm{15}^{\mathrm{1789}} \:+\:\mathrm{17}^{\mathrm{1789}} \:+\:\mathrm{19}^{\mathrm{1789}} \\ $$

Question Number 84680    Answers: 1   Comments: 0

show that ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((log(xyz))/((1+x^2 )(1+y^2 )(1+z^2 ))) dx dy dz=((−3π^2 G)/(16))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({xyz}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}\:{dx}\:{dy}\:{dz}=\frac{−\mathrm{3}\pi^{\mathrm{2}} {G}}{\mathrm{16}} \\ $$

Question Number 84637    Answers: 0   Comments: 5

prove that lim_(x→∞) (1 + (1/x))^x =e

$$\mathrm{prove}\:\mathrm{that}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}} \:={e} \\ $$

Question Number 84607    Answers: 3   Comments: 1

1)∫(√(sin(x))) dx 2)∫cos(x^2 )dx

$$\left.\mathrm{1}\right)\int\sqrt{{sin}\left({x}\right)}\:{dx} \\ $$$$\left.\mathrm{2}\right)\int{cos}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$ \\ $$

Question Number 84510    Answers: 2   Comments: 0

Question Number 84382    Answers: 0   Comments: 0

∫((cos(2x) sin(x))/(cos(x)+sin(2x))) dx

$$\int\frac{{cos}\left(\mathrm{2}{x}\right)\:{sin}\left({x}\right)}{{cos}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)}\:{dx} \\ $$

Question Number 84359    Answers: 0   Comments: 1

Question Number 84341    Answers: 0   Comments: 1

Find the centre of symmetry of the curve: y = (1/(x + 2))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{curve}: \\ $$$$\:\:\:\:{y}\:=\:\frac{\mathrm{1}}{{x}\:+\:\mathrm{2}} \\ $$

Question Number 84323    Answers: 1   Comments: 0

A particle moving in a straight line OX has a displacement x from O at time t where x satisfies the equation (d^2 x/(dt^2 )) + 2(dx/dt) + 3x = 0 the damping factor for the motion is [A] e^(−1) [B] e^(−2t) [C] e^(−3t) [D] e^(−5t)

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:{OX}\:\mathrm{has}\:\mathrm{a} \\ $$$$\mathrm{displacement}\:{x}\:\mathrm{from}\:{O}\:\mathrm{at}\:\mathrm{time}\:{t}\:\mathrm{where}\:{x}\:\mathrm{satisfies} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} \:}\:+\:\mathrm{2}\frac{{dx}}{{dt}}\:+\:\mathrm{3}{x}\:=\:\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{damping}\:\mathrm{factor}\:\mathrm{for}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{is} \\ $$$$\left[\mathrm{A}\right]\:{e}^{−\mathrm{1}} \\ $$$$\left[\mathrm{B}\right]\:{e}^{−\mathrm{2}{t}} \\ $$$$\left[\mathrm{C}\right]\:{e}^{−\mathrm{3}{t}} \\ $$$$\left[\mathrm{D}\right]\:{e}^{−\mathrm{5}{t}} \\ $$

Question Number 84316    Answers: 1   Comments: 1

Which one of the following sets of vectors is a basis for R^2 [A] { ((1),((−2)) ) , (((−3)),(6) )} [B] { ((1),(1) ) , ((2),(2) )} [C] { ((2),(1) ) , ((0),(1) )} [D] { ((1),(2) ) , ((4),(8) ) }

$$\mathrm{Which}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sets}\:\mathrm{of} \\ $$$$\mathrm{vectors}\:\mathrm{is}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{for}\:\mathbb{R}^{\mathrm{2}} \\ $$$$\left[\mathrm{A}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{2}}\end{pmatrix}\:,\:\begin{pmatrix}{−\mathrm{3}}\\{\mathrm{6}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{B}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\:,\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{C}\right]\:\left\{\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{pmatrix}\:,\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{D}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{4}}\\{\mathrm{8}}\end{pmatrix}\:\right\} \\ $$

Question Number 84242    Answers: 1   Comments: 1

∫_0 ^(ln2) (1/(cosh(x + ln4)))dx

$$\underset{\mathrm{0}} {\overset{\mathrm{ln2}} {\int}}\frac{\mathrm{1}}{\mathrm{cosh}\left({x}\:+\:\mathrm{ln4}\right)}{dx} \\ $$

Question Number 84263    Answers: 1   Comments: 0

Using the approximation h((dy/dx))_n ≈ y_(n+1) −y_n and that (dy/dx) = 1, y =2 when x = 0 . then , y_1 = [A] h−2 [B] h + 2 [C] h−1 [D] h + 1

$$\mathrm{Using}\:\mathrm{the}\:\mathrm{approximation} \\ $$$$\:{h}\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:{y}_{{n}+\mathrm{1}} −{y}_{{n}} \:\mathrm{and}\:\mathrm{that}\:\frac{{dy}}{{dx}}\:=\:\mathrm{1},\:{y}\:=\mathrm{2} \\ $$$$\mathrm{when}\:{x}\:=\:\mathrm{0}\:.\:\mathrm{then}\:,\:{y}_{\mathrm{1}} \:= \\ $$$$\left[\mathrm{A}\right]\:{h}−\mathrm{2} \\ $$$$\left[\mathrm{B}\right]\:{h}\:+\:\mathrm{2} \\ $$$$\left[\mathrm{C}\right]\:{h}−\mathrm{1} \\ $$$$\left[\mathrm{D}\right]\:{h}\:+\:\mathrm{1} \\ $$

  Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com