Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 71
Question Number 81704 Answers: 0 Comments: 0
$${find}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:{and}\:\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$
Question Number 81657 Answers: 0 Comments: 2
$$\:\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{x}+\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\right)^{\mathrm{15}} }=.... \\ $$
Question Number 81545 Answers: 0 Comments: 3
Question Number 81518 Answers: 0 Comments: 0
Question Number 81514 Answers: 0 Comments: 0
$${Hello}\:{sirs}\:...\:{what}\:{are}\:{the}\:{graphic} \\ $$$${maker}\:{Apps}\:{can}\:{you}\:{suggest}\:{me}\: \\ $$$${for}\:{my}\:{android}\:{phone}\:...{please}. \\ $$
Question Number 81458 Answers: 0 Comments: 2
$$\mathrm{if}\:\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{3}\:,\mathrm{a}_{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{a}_{\mathrm{n}+\mathrm{2}} \:=\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} +\frac{\mathrm{a}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{a}_{\mathrm{6}} \:=? \\ $$$$\mathrm{mister}\:\mathrm{W}\:\mathrm{method} \\ $$$$\mathrm{a}_{\mathrm{n}} \:=\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} +\mathrm{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{1}} =\:\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+\mathrm{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{3} \\ $$$$\mathrm{a}_{\mathrm{2}} \:=\:\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow\mathrm{A}+\mathrm{B}+\left(\mathrm{A}−\mathrm{B}\right)\sqrt{\mathrm{3}}\:=\mathrm{6} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{A}+\mathrm{B}\right)+\left(\mathrm{A}−\mathrm{B}\right)\sqrt{\mathrm{3}}\:=\mathrm{4} \\ $$$$\mathrm{A}=\:\frac{\mathrm{4}−\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}}}\:,\:\mathrm{B}\:=\:\frac{−\mathrm{4}−\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\mathrm{a}_{\mathrm{n}} \:=\:\left(\frac{\mathrm{4}−\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} −\left(\frac{\mathrm{4}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} \\ $$
Question Number 81124 Answers: 1 Comments: 0
Question Number 81115 Answers: 0 Comments: 0
$$\mathrm{e}^{\mathrm{x}} \int\frac{\mathrm{2}{csec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\mathrm{4}+\left(\mathrm{2}{tan}\theta\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }\:\:= \\ $$$$\mathrm{e}^{\mathrm{x}} \int\frac{\mathrm{2}{csec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\mathrm{4}+\left(\mathrm{2}{tan}\theta\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }\:\:= \\ $$
Question Number 80997 Answers: 0 Comments: 4
$${give}\:{a}\:{rational}\:{fraction}\:{example}\:: \\ $$$${cancelling}\:{in}\:-\mathrm{1}\:{and}\:\mathrm{2}\:{having}\:{as}\:{a}\:{set}\:{defnition}\:\mathbb{R} \\ $$
Question Number 80994 Answers: 0 Comments: 1
$$\mathrm{donnre}\:\mathrm{un}\:\mathrm{exenple}\:\mathrm{de}\:\mathrm{fraction}\:\mathrm{rationnelle}: \\ $$$$\left.\mathrm{1}\right)\mathrm{s}'\mathrm{annulant}\:\mathrm{en}\:-\mathrm{1}\:\mathrm{et}\:\mathrm{2}\:\mathrm{ayant}\:\mathrm{pour}\:\mathrm{ensemble}\:\mathrm{definition}\:\mathbb{R} \\ $$
Question Number 80974 Answers: 0 Comments: 2
$$\:\mathrm{Show}\:\mathrm{that}\:\mathrm{gcd}\:\left({a}\:,\:{a}\:+\:{x}\right)\:\mid\:{x} \\ $$$${hence}\:{show}\:{that}\:{any}\:{two}\:{consecutive} \\ $$$${integers}\:{are}\:{coprime} \\ $$
Question Number 80973 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{2}{x}−\mathrm{7},\:\:\mathrm{0}\:<\:{x}\:<\:\mathrm{6}}\\{\mathrm{2}^{{x}} ,\:\:\:\mathrm{7}\:<\:{x}\:<\:\mathrm{8}}\end{cases} \\ $$$$\mathrm{and}\:\mathrm{f}\:\mathrm{is}\:\mathrm{periodic}\:\mathrm{of}\:\mathrm{period}\:\mathrm{4}. \\ $$$$\mathrm{find}\:{f}\left(\mathrm{200}\right) \\ $$
Question Number 80890 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{1}+\mathrm{i}}{\mathrm{2}−\mathrm{i}}+\frac{\mathrm{2}+\mathrm{i}}{\mathrm{1}−\mathrm{i}}\right)^{\mathrm{3}} =\mathrm{500}{x}+\mathrm{500}{y}\mathrm{i} \\ $$$${find}\:{x},{y} \\ $$
Question Number 80613 Answers: 1 Comments: 2
$${Q}.{find}\:\:\:\frac{{d}}{{dx}}\left({x}!\right) \\ $$
Question Number 80550 Answers: 1 Comments: 1
Question Number 80540 Answers: 0 Comments: 1
Question Number 80515 Answers: 0 Comments: 1
$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\phi} \right)^{\phi} } \\ $$
Question Number 80505 Answers: 0 Comments: 8
$$\mathrm{Given}\:\mathrm{that}\:\:\mathrm{7}^{{k}} \:\equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{15}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Write}\:\mathrm{down}\:\mathrm{three}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\:\mathrm{7}^{{k}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{15}\right) \\ $$
Question Number 80504 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{congruences} \\ $$$${x}\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$${x}\:\equiv\:\mathrm{5}\left(\:\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\: \\ $$
Question Number 80341 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{round}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{curve} \\ $$$${r}\:=\:{a}\left(\mathrm{1}\:+\:\mathrm{cos}\:\theta\right)\:\mathrm{with}\:\mathrm{constant}\:\mathrm{angular}\: \\ $$$$\mathrm{velocity}\:\omega\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{transverse}\:\mathrm{component} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{velocity}. \\ $$
Question Number 80340 Answers: 1 Comments: 0
$$\mathrm{If}\:{P}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{c}}&{{d}}&{{a}}&{{b}}\end{pmatrix}\:\:,\:{Q}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{b}}&{{a}}&{{d}}&{{c}}\end{pmatrix}\:\mathrm{are} \\ $$$$\mathrm{permutations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{elements}\:\left({a},{b},{c},{d}\right),\:\mathrm{then}\: \\ $$$${QP}\:\equiv \\ $$$$\: \\ $$
Question Number 80293 Answers: 0 Comments: 12
$${Find}\:{all}\:{functions}\:{that}\:\:{satisfy}\:{to}\:\: \\ $$$$\left({E}\right):\:\forall\:{x}\in\mathbb{R}\:\:\:\:\:\:{xf}\left({x}\right)+\int_{\mathrm{0}} ^{{x}} {f}\left({x}−{t}\right){cos}\left(\mathrm{2}{t}\right){dt}={sin}\left(\mathrm{2}{x}\right) \\ $$$$\: \\ $$
Question Number 80175 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}\:=\:? \\ $$
Question Number 80172 Answers: 0 Comments: 2
$${Given}\:{that}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{f}\left({x}\right)+\:{x}}}{{h}}\:=\:{L}\:{then} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{{f}\left({x}\right)\:+\:\mathrm{2}{x}}}{{h}}\:=\:? \\ $$
Question Number 80159 Answers: 1 Comments: 4
$$\boldsymbol{{IF}}\:\:\boldsymbol{{THE}}\:\:\:\boldsymbol{{SUM}}\:\:\:\boldsymbol{{OF}}\:\:\:\boldsymbol{{p}}\:\:\boldsymbol{{TERMS}} \\ $$$$\boldsymbol{{OF}}\:\:\boldsymbol{{AN}}\:\:\:\:\boldsymbol{{A}}.\boldsymbol{{P}}.\:\:\:\boldsymbol{{IS}}\:\:\:\boldsymbol{{EQUAL}}\:\:\boldsymbol{{TO}} \\ $$$$\boldsymbol{{SUM}}\:\:\boldsymbol{{OF}}\:\:\:\boldsymbol{{ITS}}\:\:\:\boldsymbol{{q}}\:\:\:\boldsymbol{{TERMS}}.\:\: \\ $$$$\boldsymbol{{PROVE}}\:\:\boldsymbol{{THAT}}\:\:\boldsymbol{{THE}}\:\:\boldsymbol{{SUM}}\:\:\boldsymbol{{OF}} \\ $$$$\left(\boldsymbol{{p}}+\boldsymbol{{q}}\right)\:\:\boldsymbol{{TERMS}}\:\:\boldsymbol{{OF}}\:\:\:\boldsymbol{{IT}}\:\:\:\boldsymbol{{IS}}\:\:\: \\ $$$$\boldsymbol{{EQUAL}}\:\:\boldsymbol{{TO}}\:\:\mathrm{0}\left(\boldsymbol{{ZERO}}\right). \\ $$
Question Number 80102 Answers: 0 Comments: 0
Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75
Terms of Service
Privacy Policy
Contact: info@tinkutara.com