Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 68

Question Number 92474    Answers: 0   Comments: 0

please anyone wanna help me with Q91948

$$\mathrm{please}\:\mathrm{anyone}\:\mathrm{wanna}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{Q91948} \\ $$

Question Number 92465    Answers: 1   Comments: 7

for a 2d vectors if ∣a + b∣ = ∣a−b∣ what relationship does a and b have?

$$\mathrm{for}\:\mathrm{a}\:\mathrm{2d}\:\:\mathrm{vectors}\:\mathrm{if}\:\mid{a}\:+\:{b}\mid\:=\:\mid{a}−{b}\mid\:\mathrm{what}\:\mathrm{relationship}\:\mathrm{does}\:{a}\:\mathrm{and}\:{b}\:\mathrm{have}? \\ $$$$ \\ $$

Question Number 92344    Answers: 0   Comments: 3

∫_0 ^1 (dx/((√(1+3x))−(√(1−3x))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{3x}}−\sqrt{\mathrm{1}−\mathrm{3x}}} \\ $$

Question Number 92055    Answers: 0   Comments: 3

∫(((x+1)/((x^2 +4x+5)^2 )))dx

$$\int\left(\frac{\mathrm{x}+\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{5}\right)^{\mathrm{2}} }\right)\mathrm{dx} \\ $$

Question Number 92010    Answers: 1   Comments: 0

if log_6 30 = a and log_(24) 15 = b log_(12) 60 = ?

$$\mathrm{if}\:\mathrm{log}_{\mathrm{6}} \mathrm{30}\:=\:{a}\:\mathrm{and}\:\mathrm{log}_{\mathrm{24}} \mathrm{15}\:=\:{b} \\ $$$$\mathrm{log}_{\mathrm{12}} \mathrm{60}\:=\:? \\ $$

Question Number 91995    Answers: 0   Comments: 1

hello what is the metric of schwarzchild dynamics.

$${hello}\:{what}\:{is}\:{the}\:{metric}\:{of}\:{schwarzchild}\:{dynamics}. \\ $$

Question Number 92025    Answers: 2   Comments: 1

∫(((x−1)/(x^2 −x−1)))dx

$$\int\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1}}\right)\mathrm{dx} \\ $$

Question Number 91948    Answers: 0   Comments: 1

Question Number 91946    Answers: 2   Comments: 3

a particle is projected from a point at a height 3h metres above a horizontal play ground. the direction of the projectile makes an angle α with the horizontal through the point of projection. show that if th greatest height reached above the point lc projection is h metres, then the horizontal distance travelled by the particle before striking the plane is 6h cotα metres. Find the vertical and horizontal component of the speed of the particle just before it hits the ground.

$$\mathrm{a}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{3}{h}\:\mathrm{metres}\:\mathrm{above}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{play}\:\mathrm{ground}.\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{projectile}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}.\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{th}\:\mathrm{greatest} \\ $$$$\mathrm{height}\:\mathrm{reached}\:\mathrm{above}\:\mathrm{the}\:\mathrm{point}\:\mathrm{lc}\:\mathrm{projection}\:\mathrm{is}\:{h}\:\mathrm{metres},\:\mathrm{then}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{distance}\:\mathrm{travelled}\:\mathrm{by}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{before}\:\mathrm{striking}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{6}{h}\:\mathrm{cot}\alpha\:\mathrm{metres}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{vertical}\:\mathrm{and}\:\mathrm{horizontal}\:\mathrm{component}\:\mathrm{of}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{just} \\ $$$$\mathrm{before}\:\mathrm{it}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground}. \\ $$

Question Number 91931    Answers: 0   Comments: 3

∫_0 ^1 ln(Γ(x)) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right)\:{dx} \\ $$

Question Number 91930    Answers: 0   Comments: 2

lim_(x→0) cos (1/x)=

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}cos}\:\frac{\mathrm{1}}{{x}}= \\ $$

Question Number 91785    Answers: 0   Comments: 5

given these bellow sequenses . find fifth term 1). (1/5), (1/4) , (3/(11)), (2/7),... 2). (3/5), ((−9)/(11)) , ((−25)/(19)), ((57)/(35)),... 3). (1/6), (7/(11)) , ((13)/(16)), ((19)/(21)),... 4). 4,− (2/3) , −(4/(13)),− (1/5),... 5). 2, 9 , 28 , 65,...

$$\mathrm{given}\:\:\mathrm{these}\:\mathrm{bellow}\:\mathrm{sequenses}\:.\: \\ $$$$\mathrm{find}\:\mathrm{fifth}\:\mathrm{term} \\ $$$$ \\ $$$$\left.\mathrm{1}\right).\:\:\frac{\mathrm{1}}{\mathrm{5}},\:\frac{\mathrm{1}}{\mathrm{4}}\:,\:\frac{\mathrm{3}}{\mathrm{11}},\:\frac{\mathrm{2}}{\mathrm{7}},... \\ $$$$\left.\mathrm{2}\right).\:\:\frac{\mathrm{3}}{\mathrm{5}},\:\frac{−\mathrm{9}}{\mathrm{11}}\:,\:\frac{−\mathrm{25}}{\mathrm{19}},\:\frac{\mathrm{57}}{\mathrm{35}},... \\ $$$$\left.\mathrm{3}\right).\:\:\:\frac{\mathrm{1}}{\mathrm{6}},\:\frac{\mathrm{7}}{\mathrm{11}}\:,\:\frac{\mathrm{13}}{\mathrm{16}},\:\frac{\mathrm{19}}{\mathrm{21}},... \\ $$$$\left.\mathrm{4}\right).\:\:\:\mathrm{4},−\:\frac{\mathrm{2}}{\mathrm{3}}\:,\:−\frac{\mathrm{4}}{\mathrm{13}},−\:\frac{\mathrm{1}}{\mathrm{5}},... \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{2},\:\mathrm{9}\:,\:\mathrm{28}\:,\:\mathrm{65},... \\ $$

Question Number 91783    Answers: 0   Comments: 1

1). (1/2), (2/3), (3/4) , (4/5), ..., .... 2). 4,6,10,18,34,...,.... 3). 5,7,11,19,35,...,.... 4). 4,6,10,18,34,...,.... 5). 4,11,30,85,248,...,...

$$\left.\mathrm{1}\right).\:\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{2}}{\mathrm{3}},\:\frac{\mathrm{3}}{\mathrm{4}}\:,\:\frac{\mathrm{4}}{\mathrm{5}},\:...,\:.... \\ $$$$\left.\mathrm{2}\right).\:\:\mathrm{4},\mathrm{6},\mathrm{10},\mathrm{18},\mathrm{34},...,.... \\ $$$$\left.\mathrm{3}\right).\:\:\mathrm{5},\mathrm{7},\mathrm{11},\mathrm{19},\mathrm{35},...,.... \\ $$$$\left.\mathrm{4}\right).\:\:\mathrm{4},\mathrm{6},\mathrm{10},\mathrm{18},\mathrm{34},...,.... \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{4},\mathrm{11},\mathrm{30},\mathrm{85},\mathrm{248},...,... \\ $$

Question Number 91715    Answers: 0   Comments: 4

Question Number 91655    Answers: 2   Comments: 12

A particle is projected with an intial velocity of u ms^(−1) at an angle α to the ground from a point O on the ground. Given that it clears two walls of hieght h and distances 2h and 4h respectively from O. (a) find the tangent of α (b) the maximum hieght (c) the range and period of the particle (d) show that u^2 = (4/(26)) gh please sir can you help me using the actual equations of projectile motion?

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{with}\:\mathrm{an}\:\mathrm{intial}\:\mathrm{velocity}\:\mathrm{of}\:{u}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{to}\: \\ $$$$\mathrm{the}\:\mathrm{ground}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{O}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{it}\:\mathrm{clears} \\ $$$$\mathrm{two}\:\mathrm{walls}\:\mathrm{of}\:\mathrm{hieght}\:{h}\:\mathrm{and}\:\mathrm{distances}\:\mathrm{2h}\:\mathrm{and}\:\mathrm{4h}\:\mathrm{respectively}\:\mathrm{from}\:\mathrm{O}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{of}\:\alpha \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{hieght} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{the}\:\mathrm{range}\:\mathrm{and}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{show}\:\mathrm{that}\:{u}^{\mathrm{2}} \:=\:\frac{\mathrm{4}}{\mathrm{26}}\:\mathrm{g}{h}\: \\ $$$$\mathrm{please}\:\mathrm{sir}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{using}\:\mathrm{the}\:\mathrm{actual}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{projectile}\:\mathrm{motion}? \\ $$$$ \\ $$

Question Number 91654    Answers: 1   Comments: 0

th position vector of a particle p of mass 3 kg is given by r = [(cos 2t) i + (sin 2t)j] m given that p was intitialy at rest. find the cartesian equation of its path and describe it.

$$\mathrm{th}\:\mathrm{position}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:{p}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{3}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\: \\ $$$$\:{r}\:=\:\left[\left(\mathrm{cos}\:\mathrm{2}{t}\right)\:{i}\:+\:\left(\mathrm{sin}\:\mathrm{2}{t}\right){j}\right]\:\mathrm{m} \\ $$$$\mathrm{given}\:\mathrm{that}\:{p}\:\:\mathrm{was}\:\mathrm{intitialy}\:\mathrm{at}\:\mathrm{rest}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{cartesian}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{its}\:\mathrm{path}\:\mathrm{and}\:\mathrm{describe}\:\mathrm{it}. \\ $$

Question Number 91638    Answers: 1   Comments: 0

Find the general term: Σ_(n=1) ^k n^n

$${Find}\:{the}\:{general}\:{term}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{n}} \\ $$

Question Number 91613    Answers: 1   Comments: 4

solve without using l′hopital lim_(x→e) ((ln(x)−1)/((e/x)−1))

$${solve}\:{without}\:{using}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow{e}} {{lim}}\frac{{ln}\left({x}\right)−\mathrm{1}}{\frac{{e}}{{x}}−\mathrm{1}} \\ $$

Question Number 91604    Answers: 0   Comments: 0

Question Number 91588    Answers: 0   Comments: 2

what is f^(−1) for f(x)=⌊x⌋??

$${what}\:{is}\:{f}^{−\mathrm{1}} \:{for}\:{f}\left({x}\right)=\lfloor{x}\rfloor?? \\ $$

Question Number 91476    Answers: 0   Comments: 2

Find the slope of the tangent line to the graph of: y^4 +3y−4x^3 =5x+1 at the point P (1, −2)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangent}\: \\ $$$$\mathrm{line}\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}: \\ $$$$\mathrm{y}^{\mathrm{4}} +\mathrm{3y}−\mathrm{4x}^{\mathrm{3}} =\mathrm{5x}+\mathrm{1}\:\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{P}\:\left(\mathrm{1},\:−\mathrm{2}\right) \\ $$

Question Number 91421    Answers: 2   Comments: 2

∫_1 ^3 (1/(x(√(3x^2 +2x−1))))dx

$$\int_{\mathrm{1}} ^{\mathrm{3}} \frac{\mathrm{1}}{{x}\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}}{dx} \\ $$

Question Number 91375    Answers: 0   Comments: 3

x4+2x3−5x2+6x+2/x2−2x+2^

$${x}\mathrm{4}+\mathrm{2}{x}\mathrm{3}−\mathrm{5}{x}\mathrm{2}+\mathrm{6}{x}+\mathrm{2}/{x}\mathrm{2}−\mathrm{2}{x}+\mathrm{2}^{} \\ $$

Question Number 91374    Answers: 0   Comments: 0

A car of mass 700 kg has maximum power P ,at all times, there is a non gravitational R to the motion of the car. the car moves along an inclined of angle θ where 10 sinθ = 1. The maximum speed of the car up the plane is is half the value of the speed down the plane. (a) find the value of R. on level road the car has speed of 20 ms^(−1) . (b) find the value of P.

$$\mathrm{A}\:\mathrm{car}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{700}\:\mathrm{kg}\:\mathrm{has}\:\mathrm{maximum}\:\mathrm{power}\:{P}\:\:,\mathrm{at}\:\mathrm{all}\:\mathrm{times}, \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:\mathrm{gravitational}\:{R}\:\mathrm{to}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\mathrm{the}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{along}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{of}\:\mathrm{angle}\:\theta\:\mathrm{where}\:\mathrm{10}\:\mathrm{sin}\theta\:=\:\mathrm{1}.\:\mathrm{The} \\ $$$$\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{up}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{R}. \\ $$$$\:\mathrm{on}\:\mathrm{level}\:\mathrm{road}\:\mathrm{the}\:\mathrm{car}\:\mathrm{has}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{20}\:\mathrm{ms}^{−\mathrm{1}} . \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}. \\ $$

Question Number 91303    Answers: 0   Comments: 3

Question Number 91302    Answers: 2   Comments: 0

  Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com