Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 66

Question Number 89126    Answers: 0   Comments: 0

6[(√( ))

$$\mathrm{6}\left[\sqrt{\:\:}\right. \\ $$

Question Number 89093    Answers: 0   Comments: 0

Question Number 89092    Answers: 0   Comments: 2

Evaluate : lim_(n→∞) e^(−n) Σ_(k=0) ^n (n^k /(k!))

$${Evaluate}\::\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−{n}} \:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}^{{k}} }{{k}!} \\ $$

Question Number 89074    Answers: 0   Comments: 1

×^4 +×^2 =1

$$×^{\mathrm{4}} +×^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 89063    Answers: 0   Comments: 0

let f(x) = x^3 + 2x^2 + 3x + 4 find the region enclosed by f ′, f ′′ and f ′′′

$$\:\mathrm{let}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:+\:\mathrm{4} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{region}\:\mathrm{enclosed}\:\mathrm{by}\:{f}\:',\:{f}\:''\:\mathrm{and}\:{f}\:''' \\ $$

Question Number 89089    Answers: 1   Comments: 0

16^(3/4) +2

$$\mathrm{16}^{\mathrm{3}/\mathrm{4}} \:+\mathrm{2} \\ $$

Question Number 89038    Answers: 1   Comments: 0

solve log_x (x−3)=log_x (5−x)

$${solve} \\ $$$${log}_{{x}} \left({x}−\mathrm{3}\right)={log}_{{x}} \left(\mathrm{5}−{x}\right) \\ $$

Question Number 88977    Answers: 0   Comments: 1

x^3 + 3^x = 17 x =?

$$\:{x}^{\mathrm{3}} \:+\:\mathrm{3}^{{x}} \:=\:\mathrm{17} \\ $$$${x}\:=? \\ $$

Question Number 88899    Answers: 0   Comments: 14

Simplify ((((35+18i(√3)))^(1/3) +((35−18i(√3)))^(1/3) −4)/3)

$${Simplify} \\ $$$$\frac{\sqrt[{\mathrm{3}}]{\mathrm{35}+\mathrm{18}{i}\sqrt{\mathrm{3}}}+\sqrt[{\mathrm{3}}]{\mathrm{35}−\mathrm{18}{i}\sqrt{\mathrm{3}}}−\mathrm{4}}{\mathrm{3}} \\ $$

Question Number 88892    Answers: 0   Comments: 2

Question Number 88592    Answers: 1   Comments: 0

show that the variance δ^2 of a set of observations x_1 ,x_2 ,...x_n with mean x^_ can be expressed in the form δ^2 = ((Σ_(i=1) ^n x_i ^2 )/n) − x^ ^(2 )

$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{variance}\:\delta^{\mathrm{2}} \:\mathrm{of}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{observations}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,...{x}_{{n}} \:\mathrm{with}\:\mathrm{mean} \\ $$$$\overset{\_} {{x}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\:\delta^{\mathrm{2}} \:=\:\frac{\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{\mathrm{2}} }{{n}}\:−\:\bar {{x}}\:^{\mathrm{2}\:} \\ $$

Question Number 88559    Answers: 0   Comments: 1

∫_((−π)/6) ^((3π)/4) ((√(tanx))/(1+(√(tanx))))dx

$$\int_{\frac{−\pi}{\mathrm{6}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \frac{\sqrt{{tanx}}}{\mathrm{1}+\sqrt{{tanx}}}{dx} \\ $$

Question Number 88494    Answers: 0   Comments: 2

∫ (√(cos(x))) dx

$$\int\:\sqrt{\mathrm{cos}\left(\mathrm{x}\right)}\:\:\mathrm{dx} \\ $$

Question Number 88436    Answers: 0   Comments: 0

show that (for e>1) the equation of a hyperbola with focus (±ae,0) and directrix x = (a/e) is (x^2 /a^2 ) − (y^2 /b^2 ) hence find an equation for the eccencitrity of the hyperbola

$$\:\mathrm{show}\:\mathrm{that}\:\left(\mathrm{for}\:{e}>\mathrm{1}\right)\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{with}\: \\ $$$$\mathrm{focus}\:\:\left(\pm{ae},\mathrm{0}\right)\:\mathrm{and}\:\mathrm{directrix}\:\:{x}\:=\:\frac{{a}}{{e}}\:\mathrm{is}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:−\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{hence}\:\mathrm{find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{eccencitrity}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{hyperbola} \\ $$

Question Number 88434    Answers: 0   Comments: 2

find the partial derivatives of first and second order for the function f(x,y) = x^3 y + 3xy + y^4

$$\mathrm{find}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{derivatives}\:\mathrm{of}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{order} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:{f}\left({x},{y}\right)\:=\:{x}^{\mathrm{3}} {y}\:+\:\mathrm{3}{xy}\:+\:{y}^{\mathrm{4}} \\ $$

Question Number 88417    Answers: 0   Comments: 1

e^(−z) _1 f_1 (a;b;z)=((Γ(b))/(Γ(b−a))) G_(1,2) ^(1,1) (z∣_(0,1−b) ^(a−b+1) )

$${e}^{−{z}} \:_{\mathrm{1}} {f}_{\mathrm{1}} \left({a};{b};{z}\right)=\frac{\Gamma\left({b}\right)}{\Gamma\left({b}−{a}\right)}\:{G}_{\mathrm{1},\mathrm{2}} ^{\mathrm{1},\mathrm{1}} \left({z}\mid_{\mathrm{0},\mathrm{1}−{b}} ^{{a}−{b}+\mathrm{1}} \right) \\ $$

Question Number 88339    Answers: 3   Comments: 3

∫( (√(tan x )) + (√(cot x)) )dx = ?

$$\:\int\left(\:\sqrt{\mathrm{tan}\:{x}\:}\:+\:\sqrt{\mathrm{cot}\:{x}}\:\right){dx}\:=\:? \\ $$

Question Number 88263    Answers: 1   Comments: 1

prove that ∣((e^z −e^(−z) )/2)∣^2 +cos^2 y=sinh^2 x when z=x+iy

$${prove}\:{that}\: \\ $$$$\mid\frac{{e}^{{z}} −{e}^{−{z}} }{\mathrm{2}}\mid^{\mathrm{2}} +{cos}^{\mathrm{2}} {y}={sinh}^{\mathrm{2}} {x}\:\:\:\:\:{when}\:{z}={x}+{iy} \\ $$$$ \\ $$

Question Number 88236    Answers: 1   Comments: 0

Evaluate ∫(((27)/(x^3 −6)))^(1/3) dx

$$\:\mathrm{Evaluate}\:\:\int\sqrt[{\mathrm{3}}]{\frac{\mathrm{27}}{{x}^{\mathrm{3}} −\mathrm{6}}}\:{dx}\: \\ $$

Question Number 88235    Answers: 0   Comments: 1

find a maclaurine series solution to the differential equation up to the term in x^4 . (dy/dx) − x = xy if y = 1 when x = 0.

$$\:\mathrm{find}\:\mathrm{a}\:\mathrm{maclaurine}\:\mathrm{series}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{term}\:\mathrm{in}\:{x}^{\mathrm{4}} . \\ $$$$\:\frac{{dy}}{{dx}}\:−\:{x}\:=\:{xy}\:\:\:\mathrm{if}\:\:{y}\:=\:\mathrm{1}\:\mathrm{when}\:{x}\:=\:\mathrm{0}. \\ $$

Question Number 88169    Answers: 1   Comments: 2

find Laplace transform t^3 . cos 4t

$$\mathrm{find}\:\mathrm{Laplace}\:\mathrm{transform}\: \\ $$$$\mathrm{t}^{\mathrm{3}} .\:\mathrm{cos}\:\:\mathrm{4t} \\ $$

Question Number 87870    Answers: 0   Comments: 0

x amd y are imtegers. how many possible solitions do the eqiation has x^2 −10y^2 = ±1

$$\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{amd}}\:\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{imtegers}}. \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{many}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{solitions}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{eqiation}}\:\boldsymbol{\mathrm{has}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{10}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:=\:\pm\mathrm{1} \\ $$

Question Number 87862    Answers: 0   Comments: 3

Evaluate ∫_(−1) ^1 (1/(x−1)) dx

$$\mathrm{Evaluate}\:\:\:\:\overset{\mathrm{1}} {\int}_{−\mathrm{1}} \frac{\mathrm{1}}{{x}−\mathrm{1}}\:{dx}\: \\ $$

Question Number 87861    Answers: 0   Comments: 4

∫_0 ^(π/4) tanh 2x dx

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\mathrm{tanh}\:\mathrm{2}{x}\:{dx} \\ $$

Question Number 87754    Answers: 0   Comments: 0

Given that forces F_(1 ) and F_2 position vectors r_(1 ) and r_2 F_1 = (2i + 3j)N r_1 = i + 2j F_2 = (αi−7j) N r_2 = 3i + 4j Given that these system of forces form a couple find the value of α.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{forces}\:\mathrm{F}_{\mathrm{1}\:} \:\mathrm{and}\:\mathrm{F}_{\mathrm{2}} \:\mathrm{position}\:\mathrm{vectors}\:\mathrm{r}_{\mathrm{1}\:} \mathrm{and}\:\mathrm{r}_{\mathrm{2}} \\ $$$$\:\:\boldsymbol{\mathrm{F}}_{\mathrm{1}} \:=\:\left(\mathrm{2}\boldsymbol{{i}}\:+\:\mathrm{3}\boldsymbol{{j}}\right)\mathrm{N}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} =\:\boldsymbol{\mathrm{i}}\:+\:\mathrm{2}\boldsymbol{\mathrm{j}} \\ $$$$\:\:\:\boldsymbol{\mathrm{F}}_{\mathrm{2}} \:=\:\left(\alpha\boldsymbol{{i}}−\mathrm{7}\boldsymbol{{j}}\right)\:\mathrm{N}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:=\:\mathrm{3}\boldsymbol{\mathrm{i}}\:+\:\mathrm{4}\boldsymbol{\mathrm{j}} \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{these}\:\mathrm{system}\:\mathrm{of}\:\mathrm{forces}\:\mathrm{form}\:\mathrm{a}\:\mathrm{couple} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\alpha. \\ $$

Question Number 87752    Answers: 1   Comments: 0

A particle exhibits simple hamornic motion such that (d^2 x/dt^2 ) + 4x = 0 Calculate the period of the ocsillation

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{exhibits}\:\mathrm{simple}\:\mathrm{hamornic}\:\mathrm{motion}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\:+\:\mathrm{4}{x}\:=\:\mathrm{0} \\ $$$$\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ocsillation}\: \\ $$

  Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com