Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 66

Question Number 96052    Answers: 1   Comments: 0

Question Number 96041    Answers: 1   Comments: 0

if f(x)=3^x^(2+x^3 ) find f′(x)?

$${if}\:{f}\left({x}\right)=\mathrm{3}^{{x}^{\mathrm{2}+{x}^{\mathrm{3}} } } \:\:\:{find}\:{f}'\left({x}\right)? \\ $$

Question Number 96008    Answers: 0   Comments: 1

((1−(1/a))/(a^2 −(1/a^2 )))

$$\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{a}}}{\mathrm{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }} \\ $$

Question Number 96007    Answers: 0   Comments: 1

((9x^2 +4a^2 )/(9x^2 −4a^2 )) +((3x)/(3x+2a)) −((2a)/(2a−3x))

$$\frac{\mathrm{9x}^{\mathrm{2}} +\mathrm{4a}^{\mathrm{2}} }{\mathrm{9x}^{\mathrm{2}} −\mathrm{4a}^{\mathrm{2}} }\:+\frac{\mathrm{3x}}{\mathrm{3x}+\mathrm{2a}}\:−\frac{\mathrm{2a}}{\mathrm{2a}−\mathrm{3x}} \\ $$

Question Number 96026    Answers: 0   Comments: 1

sin (p/x)=1

$$\mathrm{sin}\:\frac{\mathrm{p}}{\mathrm{x}}=\mathrm{1} \\ $$

Question Number 95670    Answers: 0   Comments: 0

Question Number 95604    Answers: 1   Comments: 3

Question Number 95473    Answers: 1   Comments: 0

Question Number 95420    Answers: 0   Comments: 7

tinkutara admint I want to update to version 2.074

$$\mathrm{tinkutara}\:\mathrm{admint} \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{update}\:\mathrm{to}\:\mathrm{version}\:\mathrm{2}.\mathrm{074} \\ $$

Question Number 95259    Answers: 1   Comments: 1

find all roots ((√6) −(√2)i)^(1/3) by using demover theorem ?

$${find}\:{all}\:{roots}\:\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{2}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {by}\:{using}\:{demover}\:{theorem}\:? \\ $$

Question Number 95121    Answers: 1   Comments: 1

Question Number 95020    Answers: 1   Comments: 1

Question Number 94914    Answers: 1   Comments: 0

Question Number 94820    Answers: 1   Comments: 0

A train which travels at a uniform speed due to mechanical fault after traveling for an hour goes at 3/5 th of the original speed and reaches the destination 2 hours late. If the fault occured after traveling another 50 miles the train would have reached 40 minutes earlier. What is the distance between the two stations ?

$${A}\:{train}\:{which}\:{travels}\:{at}\:{a}\:{uniform}\:{speed}\:{due}\:{to}\:{mechanical}\:{fault}\:{after}\: \\ $$$${traveling}\:{for}\:{an}\:{hour}\:{goes}\:{at}\:\mathrm{3}/\mathrm{5}\:{th}\:{of}\:{the}\:{original}\:{speed}\:{and}\:{reaches}\:{the}\: \\ $$$${destination}\:\mathrm{2}\:{hours}\:{late}.\:{If}\:{the}\:{fault}\:{occured}\:{after}\:{traveling}\:{another}\:\mathrm{50} \\ $$$${miles}\:{the}\:{train}\:{would}\:{have}\:{reached}\:\mathrm{40}\:{minutes}\:{earlier}.\:{What}\:{is}\:{the}\: \\ $$$${distance}\:{between}\:{the}\:{two}\:{stations}\:? \\ $$

Question Number 94782    Answers: 1   Comments: 0

The velocity of physical quantities is given by v = (√((P + (1/n))/x)) , where P is the pressure. Find the dimention of n and x.

$$\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{physical}\:\mathrm{quantities}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\:\:\mathrm{v}\:\:=\:\:\sqrt{\frac{\mathrm{P}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{x}}}\:,\:\:\mathrm{where}\:\:\mathrm{P}\:\mathrm{is}\:\mathrm{the}\:\mathrm{pressure}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{dimention}\:\mathrm{of}\:\:\:\mathrm{n}\:\:\mathrm{and}\:\:\mathrm{x}. \\ $$

Question Number 94769    Answers: 2   Comments: 0

Question Number 94739    Answers: 2   Comments: 2

Question Number 94455    Answers: 1   Comments: 3

Solve (D^2 −2D+1)y=xe^x sinx pleas help me sir

$${Solve}\:\left({D}^{\mathrm{2}} −\mathrm{2}{D}+\mathrm{1}\right){y}={xe}^{{x}} {sinx}\: \\ $$$${pleas}\:{help}\:{me}\:{sir}\: \\ $$

Question Number 94419    Answers: 0   Comments: 0

Let G be a connected graph and let X be the set of vertices of G of odd degree. suppose that ∣X∣=2k, where k≥1 show that there are k edge-disjoint trail Q_1 , Q_2 ,...,Q_k in G such that E(G)=E(Q_1 )∪E(Q_2 )∪....∪E(Q_k )

$${Let}\:{G}\:{be}\:{a}\:{connected}\:{graph}\:{and}\:{let}\:{X}\:{be}\:{the}\:{set}\:{of}\:{vertices}\:{of}\:{G}\:{of}\:{odd}\:{degree}.\:{suppose}\:{that}\:\mid{X}\mid=\mathrm{2}{k},\:{where}\:{k}\geqslant\mathrm{1}\: \\ $$$${show}\:{that}\:{there}\:{are}\:{k}\:{edge}-{disjoint}\:{trail}\:{Q}_{\mathrm{1}} ,\:{Q}_{\mathrm{2}} ,...,{Q}_{{k}} \:{in}\:{G}\:{such}\:{that} \\ $$$${E}\left({G}\right)={E}\left({Q}_{\mathrm{1}} \right)\cup{E}\left({Q}_{\mathrm{2}} \right)\cup....\cup{E}\left({Q}_{{k}} \right) \\ $$

Question Number 94360    Answers: 1   Comments: 3

Question Number 94359    Answers: 0   Comments: 1

If 32 men can reap a field in 15 days .In howmany days can 20 men reap the same fied?

$${If}\:\:\mathrm{32}\:{men}\:{can}\:{reap}\:{a}\:{field}\:{in}\:\mathrm{15}\:{days}\:.{In}\:{howmany}\:{days}\:{can}\:\mathrm{20}\:{men}\:{reap}\:{the}\:{same}\:{fied}? \\ $$

Question Number 94319    Answers: 0   Comments: 4

Question Number 94081    Answers: 0   Comments: 0

P is the point representing the complex number z = r( cos θ + i sin θ) in an argand diagram such that ∣z−a∣∣z + a∣ = a^2 . Show that P moves on the curve whose equation is r^2 =2a^2 cos2θ. sketch the curve r^2 = 2a^2 cos 2θ , showing clearly the tangents at the pole.

$${P}\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:\mathrm{representing}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\:{z}\:=\:{r}\left(\:\mathrm{cos}\:\theta\:+\:{i}\:\mathrm{sin}\:\theta\right)\:\mathrm{in}\:\mathrm{an}\:\mathrm{argand}\:\mathrm{diagram}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mid{z}−{a}\mid\mid{z}\:+\:{a}\mid\:=\:{a}^{\mathrm{2}} .\:\mathrm{Show}\:\mathrm{that}\:{P}\:\mathrm{moves}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{whose}\:\mathrm{equation}\:\mathrm{is}\:{r}^{\mathrm{2}} \:=\mathrm{2}{a}^{\mathrm{2}} \:\mathrm{cos2}\theta.\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$${r}^{\mathrm{2}} \:=\:\mathrm{2}{a}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{2}\theta\:,\:\mathrm{showing}\:\mathrm{clearly}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at}\:\mathrm{the}\:\mathrm{pole}. \\ $$

Question Number 94079    Answers: 3   Comments: 0

∫_2 ^4 ((3x−2)/(x^2 −4)) dx = ?

$$\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{3}{x}−\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{4}}\:{dx}\:=\:? \\ $$

Question Number 94078    Answers: 0   Comments: 0

Given the function f defined by f(x) = ((∣x−2∣)/(1−∣x∣)) (i) state the domain of f. (ii) show that f(x) = { ((((2−x)/(1+x)) , x < 0)),((((2−x)/(1−x)), 0 ≤ x < 2)),((((x−2)/(1−x)) , x ≥ 2)) :} (iii) Investigate the continuity of f at x = 2.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\:\mathrm{defined}\:\mathrm{by}\:{f}\left({x}\right)\:=\:\frac{\mid{x}−\mathrm{2}\mid}{\mathrm{1}−\mid{x}\mid} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{state}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:\begin{cases}{\frac{\mathrm{2}−{x}}{\mathrm{1}+{x}}\:,\:{x}\:<\:\mathrm{0}}\\{\frac{\mathrm{2}−{x}}{\mathrm{1}−{x}},\:\mathrm{0}\:\leqslant\:{x}\:<\:\mathrm{2}}\\{\frac{{x}−\mathrm{2}}{\mathrm{1}−{x}}\:,\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Investigate}\:\mathrm{the}\:\mathrm{continuity}\:\mathrm{of}\:{f}\:\mathrm{at}\:{x}\:=\:\mathrm{2}. \\ $$

Question Number 93787    Answers: 0   Comments: 4

  Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com