Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 65

Question Number 100785    Answers: 1   Comments: 0

Question Number 100744    Answers: 0   Comments: 17

Happy tau day to all !!! 28 june

$$\mathrm{Happy}\:\boldsymbol{\mathrm{tau}}\:\boldsymbol{\mathrm{day}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{all}}\:!!! \\ $$$$ \\ $$$$\mathrm{28}\:{june}\: \\ $$

Question Number 100624    Answers: 1   Comments: 3

Find the value of (√(2+(√(2+(√(2+(√2)))))))...∞ using cos function

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}...\infty\:\mathrm{using}\:\mathrm{cos}\:\mathrm{function} \\ $$

Question Number 100539    Answers: 0   Comments: 2

(−1)^n Σ_(n=1) ^∞ (3^n /n)

$$\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{3}^{{n}} }{{n}} \\ $$

Question Number 100442    Answers: 0   Comments: 5

Find the value of log(−2) {imaginary}

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\:\:\mathrm{log}\left(−\mathrm{2}\right)\:\:\left\{\mathrm{imaginary}\right\} \\ $$

Question Number 100482    Answers: 1   Comments: 0

(√(1(√(2(√(3(√(4(√(5(√(6(√7))))))))))))).....∞=???????

$$\sqrt{\mathrm{1}\sqrt{\mathrm{2}\sqrt{\mathrm{3}\sqrt{\mathrm{4}\sqrt{\mathrm{5}\sqrt{\mathrm{6}\sqrt{\mathrm{7}}}}}}}}.....\infty=??????? \\ $$

Question Number 100295    Answers: 0   Comments: 0

a relation R is defined on the set of real numbers by xRy if and only if x−y is a multiple of 3. show that R is transitive

$${a}\:{relation}\:{R}\:{is}\:{defined}\:{on}\:{the}\:{set}\:{of}\:{real} \\ $$$${numbers}\:{by}\:{xRy}\:{if}\:{and}\:{only}\:{if}\:{x}−{y}\:{is}\:{a}\: \\ $$$${multiple}\:{of}\:\mathrm{3}.\:{show}\:{that}\:{R}\:{is}\:{transitive} \\ $$

Question Number 100240    Answers: 2   Comments: 9

Find (x,y)∈R such that; ((x+y)/(x^2 −xy+y^2 ))=(7/2) updated from (2/7)→(7/2). Sorry, it was a mistake.

$$\mathrm{Find}\:\:\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}\:\mathrm{such}\:\:\mathrm{that}; \\ $$$$\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}^{\mathrm{2}} −\mathrm{xy}+\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$ \\ $$$${updated}\:{from}\:\frac{\mathrm{2}}{\mathrm{7}}\rightarrow\frac{\mathrm{7}}{\mathrm{2}}.\:{Sorry},\:{it}\:{was}\:{a}\:{mistake}. \\ $$

Question Number 100097    Answers: 0   Comments: 1

∫(tanx)^e^(iπ) dx

$$\int\left({tanx}\right)^{{e}^{{i}\pi} } {dx} \\ $$

Question Number 100000    Answers: 2   Comments: 1

1+(1/(32))+(1/(243))+(1/(1024))+...∞

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{243}}+\frac{\mathrm{1}}{\mathrm{1024}}+...\infty \\ $$

Question Number 99997    Answers: 0   Comments: 2

Question Number 99995    Answers: 0   Comments: 0

(√(1(√(3(√(5(√(7(√9)))))))))...∞

$$\sqrt{\mathrm{1}\sqrt{\mathrm{3}\sqrt{\mathrm{5}\sqrt{\mathrm{7}\sqrt{\mathrm{9}}}}}}...\infty \\ $$

Question Number 99994    Answers: 1   Comments: 0

1+(1/(16))+(1/(81))+(1/(256))+.....∞

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{81}}+\frac{\mathrm{1}}{\mathrm{256}}+.....\infty \\ $$

Question Number 99975    Answers: 1   Comments: 0

((1/2))^(((1/3))^((1/4)....∞) ) =?

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}....\infty} } =? \\ $$

Question Number 99962    Answers: 1   Comments: 0

A particle Q moves in a plane and its polar coordinate (r,θ) are described by r = at^2 and θ = (1/3)t^4 find its speed at t = 2s

$$\mathrm{A}\:\mathrm{particle}\:{Q}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{its}\:\mathrm{polar}\:\mathrm{coordinate}\:\left({r},\theta\right) \\ $$$$\mathrm{are}\:\mathrm{described}\:\mathrm{by}\:{r}\:=\:{at}^{\mathrm{2}} \:\mathrm{and}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{4}} \:\mathrm{find}\:\mathrm{its} \\ $$$$\mathrm{speed}\:\mathrm{at}\:{t}\:=\:\mathrm{2s} \\ $$

Question Number 99892    Answers: 0   Comments: 0

solve the equation xa^(1/x) +(1/x)a^x =2a Where a{−1,0,1}

$${solve}\:{the}\:{equation} \\ $$$${xa}^{\frac{\mathrm{1}}{{x}}} +\frac{\mathrm{1}}{{x}}{a}^{{x}} =\mathrm{2}{a} \\ $$$${Where}\:{a}\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\} \\ $$

Question Number 99889    Answers: 1   Comments: 0

1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+.......∞{Find the sum}

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{7}}+.......\infty\left\{\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\right\} \\ $$

Question Number 99853    Answers: 2   Comments: 0

(1/1^2 )+(1/2^2 )+(1/3^2 )+(1/4^2 )+(1/6^2 )+.....∞=?

$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{2}} }+.....\infty=? \\ $$

Question Number 99670    Answers: 0   Comments: 2

Question Number 99669    Answers: 0   Comments: 0

Question Number 99623    Answers: 1   Comments: 1

obtain the modulus and arguement of (((1−i)^4 )/((2+2(√(3i)^3 ))))

$${obtain}\:{the}\:{modulus}\:{and}\:{arguement}\:{of} \\ $$$$\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{4}} }{\left(\mathrm{2}+\mathrm{2}\sqrt{\left.\mathrm{3}{i}\right)^{\mathrm{3}} }\right.} \\ $$

Question Number 99568    Answers: 1   Comments: 4

Find the value of (√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))...∞ by cos function

$${Find}\:{the}\:{value}\:{of}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}...\infty\:\:\:\:\:{by}\:{cos}\:{function} \\ $$

Question Number 99485    Answers: 2   Comments: 0

∫tan^(1/5) xdx

$$\int{tan}^{\frac{\mathrm{1}}{\mathrm{5}}} {xdx} \\ $$

Question Number 99411    Answers: 0   Comments: 2

Solve the equation xa^(1/x) +(1/x)a^x =2a where,a{−1,0,1}

$${Solve}\:{the}\:{equation} \\ $$$${xa}^{\frac{\mathrm{1}}{{x}}} +\frac{\mathrm{1}}{{x}}{a}^{{x}} =\mathrm{2}{a} \\ $$$${where},{a}\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\} \\ $$

Question Number 99368    Answers: 0   Comments: 1

please sir my problem in my solution is where?

$${please}\:{sir}\:{my}\:{problem}\:{in}\:{my}\:{solution} \\ $$$${is}\:{where}? \\ $$

Question Number 99314    Answers: 0   Comments: 2

Find[]the[]value[]of (√(1+2(√(1+3(√(1+4(√(1+5(√(1+6(√(1+7))))))))))))....∞

$${Find}\left[\right]{the}\left[\right]{value}\left[\right]{of} \\ $$$$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{3}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{\mathrm{1}+\mathrm{6}\sqrt{\mathrm{1}+\mathrm{7}}}}}}}....\infty \\ $$

  Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com