Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 65

Question Number 93366    Answers: 1   Comments: 0

solve the equation (z−2)^3 = (1/2)−i((√3)/2)

$$\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\left({z}−\mathrm{2}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 93365    Answers: 0   Comments: 3

given that α is a real number, use mathematical induction or otherwise to show that cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n )) = ((sin α)/(2^n sin((α/2^n )))) hence find the lim_(n→∞) cos((α/2))cos((α/2^2 ))cos((α/2^3 )) ... cos((α/2^n ))

$$\mathrm{given}\:\mathrm{that}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number},\:\mathrm{use}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{or} \\ $$$$\mathrm{otherwise}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{2}} }\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{3}} }\right)\:...\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right)\:=\:\frac{\mathrm{sin}\:\alpha}{\mathrm{2}^{{n}} \:\mathrm{sin}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right)} \\ $$$$\mathrm{hence}\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{2}} }\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{3}} }\right)\:...\:\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right) \\ $$

Question Number 93220    Answers: 0   Comments: 5

Please in an arithmetic mean a, A_1 , A_2 , A_3 , ... , A_n , b where A_1 , A_2 , A_3 , ... , A_n are nth arithmetic mean why is b = (n + 2)th term: like T_(n + 2) Please

$$\mathrm{Please}\:\mathrm{in}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{mean} \\ $$$$\:\:\:\:\:\:\:\mathrm{a},\:\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{A}_{\mathrm{2}} ,\:\mathrm{A}_{\mathrm{3}} ,\:...\:,\:\mathrm{A}_{\mathrm{n}} ,\:\mathrm{b} \\ $$$$\mathrm{where}\:\:\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{A}_{\mathrm{2}} ,\:\mathrm{A}_{\mathrm{3}} ,\:...\:,\:\mathrm{A}_{\mathrm{n}} \:\:\mathrm{are}\:\mathrm{nth}\:\mathrm{arithmetic}\:\mathrm{mean} \\ $$$$\mathrm{why}\:\mathrm{is}\:\:\mathrm{b}\:\:=\:\:\left(\mathrm{n}\:\:+\:\:\mathrm{2}\right)\mathrm{th}\:\:\mathrm{term}:\:\:\mathrm{like}\:\:\mathrm{T}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \\ $$$$\mathrm{Please} \\ $$

Question Number 93184    Answers: 0   Comments: 0

in solving the linear congruence ax ≡ b (mod n) ⇒ n∣(ax − b) ⇒ ax −b = kn ⇔ ax −kn = b ⇒ solving the linear diophantine equation ax −kn = b what are the general solution to the equation ax−kn = b

$$\mathrm{in}\:\mathrm{solving}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{congruence} \\ $$$${ax}\:\equiv\:{b}\:\left(\mathrm{mod}\:{n}\right)\:\Rightarrow\:{n}\mid\left({ax}\:−\:{b}\right)\:\Rightarrow\:{ax}\:−{b}\:=\:{kn}\:\Leftrightarrow\:{ax}\:−{kn}\:=\:{b} \\ $$$$\Rightarrow\:\mathrm{solving}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{diophantine}\:\mathrm{equation}\:{ax}\:−{kn}\:=\:{b} \\ $$$$\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:{ax}−{kn}\:=\:{b} \\ $$$$\: \\ $$$$ \\ $$

Question Number 93118    Answers: 1   Comments: 0

sin(x)=a −1≤a≤1

$${sin}\left({x}\right)={a} \\ $$$$−\mathrm{1}\leqslant{a}\leqslant\mathrm{1} \\ $$

Question Number 93044    Answers: 1   Comments: 2

is (8/9) is the multiplicative inerse of −1 (1/8)? why or why not?

$$\mathrm{is}\:\frac{\mathrm{8}}{\mathrm{9}}\:\mathrm{is}\:\mathrm{the}\:\mathrm{multiplicative}\:\mathrm{inerse}\:\mathrm{of}\:−\mathrm{1}\:\frac{\mathrm{1}}{\mathrm{8}}? \\ $$$$\mathrm{why}\:\mathrm{or}\:\mathrm{why}\:\mathrm{not}? \\ $$

Question Number 93081    Answers: 0   Comments: 3

Solve x^y =y^x x, y ∈ N

$$\mathrm{Solve}\:\mathrm{x}^{\mathrm{y}} =\mathrm{y}^{\mathrm{x}} \:\:\:\mathrm{x},\:\mathrm{y}\:\in\:\mathbb{N} \\ $$

Question Number 92910    Answers: 2   Comments: 2

∫(dt/(3sint+4cost))

$$\int\frac{\mathrm{dt}}{\mathrm{3sint}+\mathrm{4cost}} \\ $$

Question Number 92888    Answers: 1   Comments: 3

∫((5−t)/(1+(√((t−4)))))dt

$$\int\frac{\mathrm{5}−\mathrm{t}}{\mathrm{1}+\sqrt{\left(\mathrm{t}−\mathrm{4}\right)}}\mathrm{dt} \\ $$$$ \\ $$

Question Number 92898    Answers: 0   Comments: 0

Find a,b,c ∈ Z that satisfy (7a + 15b + 0c) mod 26 = 8 (5a + 16b + 6c) mod 26 = 21 (6a + 3b + 20c) mod 26 = 14

$$\mathrm{Find}\:{a},{b},{c}\:\in\:\mathbb{Z}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\left(\mathrm{7}{a}\:+\:\mathrm{15}{b}\:+\:\mathrm{0}{c}\right)\:\mathrm{mod}\:\mathrm{26}\:=\:\mathrm{8} \\ $$$$\left(\mathrm{5}{a}\:+\:\mathrm{16}{b}\:+\:\mathrm{6}{c}\right)\:\mathrm{mod}\:\mathrm{26}\:=\:\mathrm{21} \\ $$$$\left(\mathrm{6}{a}\:+\:\mathrm{3}{b}\:+\:\mathrm{20}{c}\right)\:\mathrm{mod}\:\mathrm{26}\:=\:\mathrm{14} \\ $$

Question Number 92788    Answers: 0   Comments: 0

Question Number 92708    Answers: 1   Comments: 0

solve the differential equations. (a) (x + 3y^2 )(d^2 y/dx^2 ) + 6y ((dy/dx))^2 + 2(dy/dx) + 2 = 0 (b) (2y−x)(d^2 y/dx^2 ) + 2((dy/dx))^2 −2 (dy/dx) + 2 = 0

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations}. \\ $$$$\:\left(\mathrm{a}\right)\:\left({x}\:+\:\mathrm{3}{y}^{\mathrm{2}} \right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{6}{y}\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \:+\:\mathrm{2}\frac{{dy}}{{dx}}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{b}\right)\:\left(\mathrm{2}{y}−{x}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \:−\mathrm{2}\:\frac{{dy}}{{dx}}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$

Question Number 92712    Answers: 0   Comments: 2

find m for fix function f(x)=(((m−1)x+3)/(x−1))

$${find}\:\:\boldsymbol{{m}}\:{for}\:{fix}\:{function} \\ $$$${f}\left({x}\right)=\frac{\left(\boldsymbol{{m}}−\mathrm{1}\right){x}+\mathrm{3}}{{x}−\mathrm{1}} \\ $$

Question Number 92605    Answers: 1   Comments: 4

If ((1+x)/(1+(√(1+x)))) +((1−x)/(1−(√(1−x)))) =1 find x

$${If}\:\frac{\mathrm{1}+{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}}}\:+\frac{\mathrm{1}−{x}}{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}\:=\mathrm{1} \\ $$$${find}\:{x} \\ $$

Question Number 92593    Answers: 0   Comments: 0

using the squeeze theorem show that lim_(x→a) (√x) = (√a)

$$\mathrm{using}\:\mathrm{the}\:\mathrm{squeeze}\:\mathrm{theorem}\: \\ $$$$\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\sqrt{{x}}\:=\:\sqrt{{a}}\: \\ $$

Question Number 92555    Answers: 0   Comments: 5

Σ_(n=1) ^∞ 1/n^2 =π^2 /6

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{1}/{n}^{\mathrm{2}} =\pi^{\mathrm{2}} /\mathrm{6} \\ $$

Question Number 92529    Answers: 0   Comments: 0

two smooth spheres of masses 2m and 3m have velocites (−12i + 8j) u ms^(−1) and (5i + 12j)u , respectively where u is a constant. The spheres collide with thier line of centre of parallel to j. Given that the coefficient of restitution between the spheres is (1/4), find the loss in kinetic energy due to impact.

$$\mathrm{two}\:\mathrm{smooth}\:\mathrm{spheres}\:\mathrm{of}\:\mathrm{masses}\:\mathrm{2}{m}\:\mathrm{and}\:\mathrm{3}{m}\:\mathrm{have}\:\mathrm{velocites} \\ $$$$\left(−\mathrm{12}\boldsymbol{\mathrm{i}}\:+\:\mathrm{8}\boldsymbol{\mathrm{j}}\right)\:{u}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{and}\:\left(\mathrm{5}\boldsymbol{\mathrm{i}}\:+\:\mathrm{12}\boldsymbol{\mathrm{j}}\right){u}\:,\:\mathrm{respectively}\:\mathrm{where}\:{u}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{constant}.\:\mathrm{The}\:\mathrm{spheres}\:\mathrm{collide}\:\mathrm{with}\:\mathrm{thier}\:\mathrm{line}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{of} \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\boldsymbol{\mathrm{j}}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{restitution}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{spheres}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}},\:\mathrm{find}\:\mathrm{the}\:\mathrm{loss}\:\mathrm{in}\:\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{due}\:\mathrm{to}\:\mathrm{impact}. \\ $$

Question Number 92474    Answers: 0   Comments: 0

please anyone wanna help me with Q91948

$$\mathrm{please}\:\mathrm{anyone}\:\mathrm{wanna}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{Q91948} \\ $$

Question Number 92465    Answers: 1   Comments: 7

for a 2d vectors if ∣a + b∣ = ∣a−b∣ what relationship does a and b have?

$$\mathrm{for}\:\mathrm{a}\:\mathrm{2d}\:\:\mathrm{vectors}\:\mathrm{if}\:\mid{a}\:+\:{b}\mid\:=\:\mid{a}−{b}\mid\:\mathrm{what}\:\mathrm{relationship}\:\mathrm{does}\:{a}\:\mathrm{and}\:{b}\:\mathrm{have}? \\ $$$$ \\ $$

Question Number 92344    Answers: 0   Comments: 3

∫_0 ^1 (dx/((√(1+3x))−(√(1−3x))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{3x}}−\sqrt{\mathrm{1}−\mathrm{3x}}} \\ $$

Question Number 92055    Answers: 0   Comments: 3

∫(((x+1)/((x^2 +4x+5)^2 )))dx

$$\int\left(\frac{\mathrm{x}+\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{5}\right)^{\mathrm{2}} }\right)\mathrm{dx} \\ $$

Question Number 92010    Answers: 1   Comments: 0

if log_6 30 = a and log_(24) 15 = b log_(12) 60 = ?

$$\mathrm{if}\:\mathrm{log}_{\mathrm{6}} \mathrm{30}\:=\:{a}\:\mathrm{and}\:\mathrm{log}_{\mathrm{24}} \mathrm{15}\:=\:{b} \\ $$$$\mathrm{log}_{\mathrm{12}} \mathrm{60}\:=\:? \\ $$

Question Number 91995    Answers: 0   Comments: 1

hello what is the metric of schwarzchild dynamics.

$${hello}\:{what}\:{is}\:{the}\:{metric}\:{of}\:{schwarzchild}\:{dynamics}. \\ $$

Question Number 92025    Answers: 2   Comments: 1

∫(((x−1)/(x^2 −x−1)))dx

$$\int\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1}}\right)\mathrm{dx} \\ $$

Question Number 91948    Answers: 0   Comments: 1

Question Number 91946    Answers: 2   Comments: 3

a particle is projected from a point at a height 3h metres above a horizontal play ground. the direction of the projectile makes an angle α with the horizontal through the point of projection. show that if th greatest height reached above the point lc projection is h metres, then the horizontal distance travelled by the particle before striking the plane is 6h cotα metres. Find the vertical and horizontal component of the speed of the particle just before it hits the ground.

$$\mathrm{a}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{3}{h}\:\mathrm{metres}\:\mathrm{above}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{play}\:\mathrm{ground}.\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{projectile}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}.\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{th}\:\mathrm{greatest} \\ $$$$\mathrm{height}\:\mathrm{reached}\:\mathrm{above}\:\mathrm{the}\:\mathrm{point}\:\mathrm{lc}\:\mathrm{projection}\:\mathrm{is}\:{h}\:\mathrm{metres},\:\mathrm{then}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{distance}\:\mathrm{travelled}\:\mathrm{by}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{before}\:\mathrm{striking}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{6}{h}\:\mathrm{cot}\alpha\:\mathrm{metres}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{vertical}\:\mathrm{and}\:\mathrm{horizontal}\:\mathrm{component}\:\mathrm{of}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{just} \\ $$$$\mathrm{before}\:\mathrm{it}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground}. \\ $$

  Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com