Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 64

Question Number 91715    Answers: 0   Comments: 4

Question Number 91655    Answers: 2   Comments: 12

A particle is projected with an intial velocity of u ms^(−1) at an angle α to the ground from a point O on the ground. Given that it clears two walls of hieght h and distances 2h and 4h respectively from O. (a) find the tangent of α (b) the maximum hieght (c) the range and period of the particle (d) show that u^2 = (4/(26)) gh please sir can you help me using the actual equations of projectile motion?

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{with}\:\mathrm{an}\:\mathrm{intial}\:\mathrm{velocity}\:\mathrm{of}\:{u}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{to}\: \\ $$$$\mathrm{the}\:\mathrm{ground}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{O}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{it}\:\mathrm{clears} \\ $$$$\mathrm{two}\:\mathrm{walls}\:\mathrm{of}\:\mathrm{hieght}\:{h}\:\mathrm{and}\:\mathrm{distances}\:\mathrm{2h}\:\mathrm{and}\:\mathrm{4h}\:\mathrm{respectively}\:\mathrm{from}\:\mathrm{O}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{of}\:\alpha \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{hieght} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{the}\:\mathrm{range}\:\mathrm{and}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{show}\:\mathrm{that}\:{u}^{\mathrm{2}} \:=\:\frac{\mathrm{4}}{\mathrm{26}}\:\mathrm{g}{h}\: \\ $$$$\mathrm{please}\:\mathrm{sir}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{using}\:\mathrm{the}\:\mathrm{actual}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{projectile}\:\mathrm{motion}? \\ $$$$ \\ $$

Question Number 91654    Answers: 1   Comments: 0

th position vector of a particle p of mass 3 kg is given by r = [(cos 2t) i + (sin 2t)j] m given that p was intitialy at rest. find the cartesian equation of its path and describe it.

$$\mathrm{th}\:\mathrm{position}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:{p}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{3}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\: \\ $$$$\:{r}\:=\:\left[\left(\mathrm{cos}\:\mathrm{2}{t}\right)\:{i}\:+\:\left(\mathrm{sin}\:\mathrm{2}{t}\right){j}\right]\:\mathrm{m} \\ $$$$\mathrm{given}\:\mathrm{that}\:{p}\:\:\mathrm{was}\:\mathrm{intitialy}\:\mathrm{at}\:\mathrm{rest}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{cartesian}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{its}\:\mathrm{path}\:\mathrm{and}\:\mathrm{describe}\:\mathrm{it}. \\ $$

Question Number 91638    Answers: 1   Comments: 0

Find the general term: Σ_(n=1) ^k n^n

$${Find}\:{the}\:{general}\:{term}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{n}} \\ $$

Question Number 91613    Answers: 1   Comments: 4

solve without using l′hopital lim_(x→e) ((ln(x)−1)/((e/x)−1))

$${solve}\:{without}\:{using}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow{e}} {{lim}}\frac{{ln}\left({x}\right)−\mathrm{1}}{\frac{{e}}{{x}}−\mathrm{1}} \\ $$

Question Number 91604    Answers: 0   Comments: 0

Question Number 91588    Answers: 0   Comments: 2

what is f^(−1) for f(x)=⌊x⌋??

$${what}\:{is}\:{f}^{−\mathrm{1}} \:{for}\:{f}\left({x}\right)=\lfloor{x}\rfloor?? \\ $$

Question Number 91476    Answers: 0   Comments: 2

Find the slope of the tangent line to the graph of: y^4 +3y−4x^3 =5x+1 at the point P (1, −2)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangent}\: \\ $$$$\mathrm{line}\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}: \\ $$$$\mathrm{y}^{\mathrm{4}} +\mathrm{3y}−\mathrm{4x}^{\mathrm{3}} =\mathrm{5x}+\mathrm{1}\:\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{P}\:\left(\mathrm{1},\:−\mathrm{2}\right) \\ $$

Question Number 91421    Answers: 2   Comments: 2

∫_1 ^3 (1/(x(√(3x^2 +2x−1))))dx

$$\int_{\mathrm{1}} ^{\mathrm{3}} \frac{\mathrm{1}}{{x}\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}}{dx} \\ $$

Question Number 91375    Answers: 0   Comments: 3

x4+2x3−5x2+6x+2/x2−2x+2^

$${x}\mathrm{4}+\mathrm{2}{x}\mathrm{3}−\mathrm{5}{x}\mathrm{2}+\mathrm{6}{x}+\mathrm{2}/{x}\mathrm{2}−\mathrm{2}{x}+\mathrm{2}^{} \\ $$

Question Number 91374    Answers: 0   Comments: 0

A car of mass 700 kg has maximum power P ,at all times, there is a non gravitational R to the motion of the car. the car moves along an inclined of angle θ where 10 sinθ = 1. The maximum speed of the car up the plane is is half the value of the speed down the plane. (a) find the value of R. on level road the car has speed of 20 ms^(−1) . (b) find the value of P.

$$\mathrm{A}\:\mathrm{car}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{700}\:\mathrm{kg}\:\mathrm{has}\:\mathrm{maximum}\:\mathrm{power}\:{P}\:\:,\mathrm{at}\:\mathrm{all}\:\mathrm{times}, \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:\mathrm{gravitational}\:{R}\:\mathrm{to}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\mathrm{the}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{along}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{of}\:\mathrm{angle}\:\theta\:\mathrm{where}\:\mathrm{10}\:\mathrm{sin}\theta\:=\:\mathrm{1}.\:\mathrm{The} \\ $$$$\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{up}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{R}. \\ $$$$\:\mathrm{on}\:\mathrm{level}\:\mathrm{road}\:\mathrm{the}\:\mathrm{car}\:\mathrm{has}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{20}\:\mathrm{ms}^{−\mathrm{1}} . \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}. \\ $$

Question Number 91303    Answers: 0   Comments: 3

Question Number 91302    Answers: 2   Comments: 0

Question Number 91297    Answers: 0   Comments: 2

Can someone please recommend a good advanced math textbook that covers precalculus?

$${Can}\:{someone}\:{please}\:{recommend} \\ $$$${a}\:{good}\:{advanced}\:{math}\:{textbook} \\ $$$${that}\:{covers}\:{precalculus}? \\ $$

Question Number 91149    Answers: 1   Comments: 1

A particle starts from rest and moves in a straight line on a smooth horizontal surface. Its acceleration at time t seconds is given by k(4v + 1) ms^(−2) where k is a positve constant and v ms^(−1) is the speed of the particle. Given that v = ((e^2 −1)/4) when t = 1. show that v = (1/4)(e^(2t) −1)

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth}\: \\ $$$$\mathrm{horizontal}\:\mathrm{surface}.\:\mathrm{Its}\:\mathrm{acceleration}\:\mathrm{at}\:\mathrm{time}\:{t}\:\mathrm{seconds}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}\left(\mathrm{4}{v}\:+\:\mathrm{1}\right)\:\mathrm{ms}^{−\mathrm{2}} \\ $$$$\mathrm{where}\:{k}\:\mathrm{is}\:\mathrm{a}\:\mathrm{positve}\:\mathrm{constant}\:\mathrm{and}\:{v}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}. \\ $$$$\mathrm{Given}\:\mathrm{that}\:{v}\:=\:\frac{{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}}\:\mathrm{when}\:{t}\:=\:\mathrm{1}.\:\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{v}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left({e}^{\mathrm{2}{t}} −\mathrm{1}\right) \\ $$

Question Number 91119    Answers: 0   Comments: 0

∫_0 ^( ∫_0 ^( k) (1 + (1/x))^x dx) sin (x^e ) dx = (π/e) k = ?

$$\: \\ $$$$\:\int_{\mathrm{0}} ^{\:\int_{\mathrm{0}} ^{\:{k}} \:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}} {dx}} \:\mathrm{sin}\:\left({x}^{{e}} \right)\:{dx}\:=\:\frac{\pi}{{e}} \\ $$$$\:{k}\:=\:? \\ $$

Question Number 91099    Answers: 1   Comments: 12

Question Number 90947    Answers: 0   Comments: 0

if α^(13) =1 and α≠1,find the quadratic equation whose roots are (α+α^3 +α^4 +α^(−4) +α^(−3) +α^(−1) ) and (α^2 +α^5 +α^6 +α^(−6) +α^(−5) +α^(−6) )

$${if}\:\alpha^{\mathrm{13}} =\mathrm{1}\:{and}\:\alpha\neq\mathrm{1},{find}\:{the}\:{quadratic}\:\:{equation} \\ $$$${whose}\:{roots}\:{are}\:\left(\alpha+\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{−\mathrm{4}} +\alpha^{−\mathrm{3}} +\alpha^{−\mathrm{1}} \right)\:{and}\:\left(\alpha^{\mathrm{2}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{6}} +\alpha^{−\mathrm{6}} +\alpha^{−\mathrm{5}} +\alpha^{−\mathrm{6}} \right) \\ $$

Question Number 90940    Answers: 1   Comments: 0

f(x)=(x)^(1/3) is there an inflection point when x=0

$${f}\left({x}\right)=\sqrt[{\mathrm{3}}]{{x}}\:\:{is}\:{there}\:{an}\:{inflection}\:{point} \\ $$$${when}\:{x}=\mathrm{0} \\ $$

Question Number 90709    Answers: 0   Comments: 2

α,β and γ are the roots of x^3 −9x+9=0 find the value of (1) α^(−3) +β^(−3) +γ^(−3) (2) α^(−5) +β^(−5) +γ^(−5)

$$\alpha,\beta\:{and}\:\gamma\:{are}\:{the}\:{roots}\:{of}\:\:{x}^{\mathrm{3}} −\mathrm{9}{x}+\mathrm{9}=\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:\left(\mathrm{1}\right)\:\alpha^{−\mathrm{3}} +\beta^{−\mathrm{3}} +\gamma^{−\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\alpha^{−\mathrm{5}} +\beta^{−\mathrm{5}} +\gamma^{−\mathrm{5}} \\ $$

Question Number 90692    Answers: 1   Comments: 2

Question Number 92777    Answers: 1   Comments: 2

a_(n+1) =(2n+1)a_n a_1 =1 a_n =?

$$\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{n}} =? \\ $$$$ \\ $$

Question Number 90647    Answers: 0   Comments: 14

Question Number 90581    Answers: 1   Comments: 0

given that α and β are roots of the equation aχ^2 +bχ+c=0. show that λμb^2 =ac(λ+μ)^(2 ) where (α/β)=(λ/μ)

$${given}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:\:{the}\:{equation}\: \\ $$$${a}\chi^{\mathrm{2}} +{b}\chi+{c}=\mathrm{0}.\:{show}\:{that}\:\lambda\mu{b}^{\mathrm{2}} ={ac}\left(\lambda+\mu\right)^{\mathrm{2}\:} \\ $$$${where}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu} \\ $$

Question Number 90316    Answers: 1   Comments: 2

determinant ((x,7),(9,(8−x)))= determinant ((7,0,(−3)),((−5),x,(−6)),((−3),(−5),(x−9)))

$$\begin{vmatrix}{{x}}&{\mathrm{7}}\\{\mathrm{9}}&{\mathrm{8}−{x}}\end{vmatrix}=\begin{vmatrix}{\mathrm{7}}&{\mathrm{0}}&{−\mathrm{3}}\\{−\mathrm{5}}&{{x}}&{−\mathrm{6}}\\{−\mathrm{3}}&{−\mathrm{5}}&{{x}−\mathrm{9}}\end{vmatrix} \\ $$$$ \\ $$

Question Number 90138    Answers: 0   Comments: 2

∫x(√(3x^3 +7)) dx

$$\int{x}\sqrt{\mathrm{3}{x}^{\mathrm{3}} +\mathrm{7}}\:{dx} \\ $$

  Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com