Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 64

Question Number 102085    Answers: 0   Comments: 0

Question Number 102080    Answers: 0   Comments: 0

A random variable, X, has a Gamma distribution with parameters α and β, (α, β>0). The p.d.f has the form f(x)=(1/(Γ(α)β^α ))x^(n−1) e^(−x/β) , for x>0 , Γ(α)=(1/β^α )∫_0 ^∞ x^(α−1) e^(−x) dx a\ Show that the Gamma density is a proper p.d.f. b\Find the mean, variance, and moment-generating function of the Gamma distribution. c\Find the fourth moment using the definition of moments.

$$\mathrm{A}\:\mathrm{random}\:\mathrm{variable},\:\mathrm{X},\:\mathrm{has}\:\mathrm{a}\:\mathrm{Gamma}\:\mathrm{distribution}\:\mathrm{with} \\ $$$$\mathrm{parameters}\:\alpha\:\mathrm{and}\:\beta,\:\left(\alpha,\:\beta>\mathrm{0}\right).\:\mathrm{The}\:\mathrm{p}.\mathrm{d}.\mathrm{f}\:\mathrm{has}\:\mathrm{the}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\Gamma\left(\alpha\right)\beta^{\alpha} }\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{−\mathrm{x}/\beta} ,\:\mathrm{for}\:\mathrm{x}>\mathrm{0}\:\:,\:\:\Gamma\left(\alpha\right)=\frac{\mathrm{1}}{\beta^{\alpha} }\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\alpha−\mathrm{1}} \mathrm{e}^{−\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{a}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{Gamma}\:\mathrm{density}\:\mathrm{is}\:\mathrm{a}\:\mathrm{proper}\:\mathrm{p}.\mathrm{d}.\mathrm{f}. \\ $$$$\mathrm{b}\backslash\mathrm{Find}\:\mathrm{the}\:\mathrm{mean},\:\mathrm{variance},\:\mathrm{and}\:\mathrm{moment}-\mathrm{generating}\:\mathrm{function}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Gamma}\:\mathrm{distribution}. \\ $$$$\mathrm{c}\backslash\mathrm{Find}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{moment}\:\mathrm{using}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{moments}. \\ $$

Question Number 102076    Answers: 0   Comments: 4

A car is currently valued at $70350.00. If it loses 12% of its value at the beginning of each year, a) find its value after three and half years. b) find the depreciation after three years

$$\mathrm{A}\:\mathrm{car}\:\mathrm{is}\:\mathrm{currently}\:\mathrm{valued}\:\mathrm{at}\:\$\mathrm{70350}.\mathrm{00}. \\ $$$$\mathrm{If}\:\mathrm{it}\:\mathrm{loses}\:\mathrm{12\%}\:\mathrm{of}\:\mathrm{its}\:\mathrm{value}\:\mathrm{at}\:\mathrm{the}\:\mathrm{beginning} \\ $$$$\mathrm{of}\:\mathrm{each}\:\mathrm{year}, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{find}\:\mathrm{its}\:\mathrm{value}\:\mathrm{after}\:\mathrm{three}\:\mathrm{and}\:\mathrm{half}\:\mathrm{years}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{depreciation}\:\mathrm{after}\:\mathrm{three}\:\mathrm{years} \\ $$

Question Number 101794    Answers: 1   Comments: 0

Question Number 101768    Answers: 0   Comments: 1

Question Number 101767    Answers: 0   Comments: 2

Question Number 101762    Answers: 0   Comments: 2

Question Number 101616    Answers: 2   Comments: 1

Question Number 101555    Answers: 1   Comments: 0

Question Number 101476    Answers: 1   Comments: 0

Question Number 101474    Answers: 1   Comments: 0

Question Number 101473    Answers: 1   Comments: 0

Question Number 101330    Answers: 0   Comments: 5

Evaluate. ∫_(−π) ^π x^9 cos x dx

$${Evaluate}. \\ $$$$\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx} \\ $$

Question Number 101329    Answers: 1   Comments: 0

Question Number 101252    Answers: 0   Comments: 1

(√(1+2(√(1+4(√(1+5(√(1+6(√(1+7(√(1+8..))))))))))))∞=?

$$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{\mathrm{1}+\mathrm{6}\sqrt{\mathrm{1}+\mathrm{7}\sqrt{\mathrm{1}+\mathrm{8}..}}}}}}\infty=? \\ $$

Question Number 101250    Answers: 0   Comments: 0

Question Number 101247    Answers: 1   Comments: 0

Question Number 101243    Answers: 0   Comments: 3

Find the solution xa^(1/x) +(1/x)a^x =2a a∈{−1,0,1} and also find when a is not given

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\:\:\mathrm{xa}^{\frac{\mathrm{1}}{\mathrm{x}}} +\frac{\mathrm{1}}{\mathrm{x}}\mathrm{a}^{\mathrm{x}} =\mathrm{2a}\:\:\:\mathrm{a}\in\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\}\:\:\:{and}\:{also}\:{find}\:{when}\:{a}\:\:{is}\:{not}\:{given} \\ $$

Question Number 101231    Answers: 1   Comments: 1

Question Number 101159    Answers: 1   Comments: 0

given the complex number z such that z−4i=a+3zi. find the value of a if z is purwly imaginary

$${given}\:{the}\:{complex}\:{number}\:{z}\:{such}\:{that} \\ $$$${z}−\mathrm{4}{i}={a}+\mathrm{3}{zi}.\: \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{if}\:\:{z}\:{is}\:{purwly}\:{imaginary} \\ $$$$ \\ $$

Question Number 101026    Answers: 1   Comments: 0

lim_(x→∞) (x/e^( sinx −x) )

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}}{{e}^{\:\mathrm{sin}{x}\:−{x}} } \\ $$

Question Number 100986    Answers: 0   Comments: 1

Question Number 100985    Answers: 0   Comments: 3

Question Number 100943    Answers: 1   Comments: 0

Determine the poles of the function; f(x)=((x^5 −1)/(x^3 −1))

$$\mathcal{D}\mathrm{etermine}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}; \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{5}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} −\mathrm{1}} \\ $$

Question Number 100916    Answers: 1   Comments: 0

solve the eqution : ((2 + x)/(12 + 4x)) = ((1/2))^x .,x =2

$${solve}\:{the}\:{eqution}\:: \\ $$$$\frac{\mathrm{2}\:+\:{x}}{\mathrm{12}\:+\:\mathrm{4}{x}}\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{x}} \:\:\:\:\:\:\:.,{x}\:=\mathrm{2}\: \\ $$

Question Number 100904    Answers: 3   Comments: 3

lim_(n→∞) [(((n+1)(n+2)......3n)/n^(2n) )]^(1/n)

$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\left[\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)......\mathrm{3}{n}}{{n}^{\mathrm{2}{n}} }\right]^{\frac{\mathrm{1}}{{n}}} \\ $$

  Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com