Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 61

Question Number 98290    Answers: 0   Comments: 1

Question Number 98022    Answers: 1   Comments: 0

Derive the relation between an Arithmetic Mean and a Geometric Mean ((x_1 x_2 ...x_n ))^(1/n) ≤((x_1 +x_2 +∙∙∙+x_n )/n) ∀n∈N^∗ , ∀(x_1 ,x_2 ,...x_n )∈(R_+ ^∗ )^n

$$\mathcal{D}\mathrm{erive}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{an}\:\mathcal{A}\mathrm{rithmetic}\:\mathcal{M}\mathrm{ean} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathcal{G}\mathrm{eometric}\:\mathcal{M}\mathrm{ean} \\ $$$$\sqrt[{\mathrm{n}}]{\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} ...\mathrm{x}_{\mathrm{n}} }\leqslant\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\centerdot\centerdot\centerdot+\mathrm{x}_{\mathrm{n}} }{\mathrm{n}}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} ,\:\forall\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,...\mathrm{x}_{\mathrm{n}} \right)\in\left(\mathbb{R}_{+} ^{\ast} \right)^{\mathrm{n}} \\ $$

Question Number 97953    Answers: 1   Comments: 3

Question Number 97833    Answers: 0   Comments: 10

Hello members of maths editor i want to say something concerning this forum. Well it is my own point of view: This forum is a place where people from all over the world come to interact together. A place where people from different back grounds, class and qualification speak a common language − mathematics. I in particular thank Tinkutara′s team for such a great platform. But i notice some people literally don′t show respect to others, like persuading others to answer thier questions, others show no appreciation for the given answers while others give rude comments with no reason behind them. please i just want to urge the Maths editor users to show more respect for others since we don′t know the identity or qualification of people who post and solve questions here. we remain one family as God guides us through our endervous.

$$\:\mathrm{Hello}\:\mathrm{members}\:\mathrm{of}\:\mathrm{maths}\:\mathrm{editor}\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{say} \\ $$$$\mathrm{something}\:\mathrm{concerning}\:\mathrm{this}\:\mathrm{forum}.\:\mathrm{Well}\:\mathrm{it} \\ $$$$\mathrm{is}\:\mathrm{my}\:\mathrm{own}\:\mathrm{point}\:\mathrm{of}\:\mathrm{view}:\:\mathrm{This}\:\mathrm{forum}\:\mathrm{is}\:\mathrm{a}\:\mathrm{place}\:\mathrm{where} \\ $$$$\mathrm{people}\:\mathrm{from}\:\mathrm{all}\:\mathrm{over}\:\mathrm{the}\:\mathrm{world}\:\mathrm{come}\:\mathrm{to}\:\mathrm{interact}\:\mathrm{together}. \\ $$$$\mathrm{A}\:\mathrm{place}\:\mathrm{where}\:\mathrm{people}\:\mathrm{from}\:\mathrm{different}\:\mathrm{back}\:\mathrm{grounds}, \\ $$$$\mathrm{class}\:\mathrm{and}\:\mathrm{qualification}\:\mathrm{speak}\:\mathrm{a}\:\mathrm{common}\:\mathrm{language}\:−\: \\ $$$$\mathrm{mathematics}.\:\mathrm{I}\:\mathrm{in}\:\mathrm{particular}\:\mathrm{thank}\:\mathrm{Tinkutara}'\mathrm{s}\:\mathrm{team}\:\mathrm{for} \\ $$$$\mathrm{such}\:\mathrm{a}\:\mathrm{great}\:\mathrm{platform}.\:\mathrm{But}\:\mathrm{i}\:\mathrm{notice}\:\mathrm{some}\:\mathrm{people}\:\mathrm{literally} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{show}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{others},\:\mathrm{like}\:\mathrm{persuading}\:\mathrm{others} \\ $$$$\mathrm{to}\:\mathrm{answer}\:\mathrm{thier}\:\mathrm{questions},\:\mathrm{others}\:\mathrm{show}\:\mathrm{no}\: \\ $$$$\mathrm{appreciation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{given}\:\mathrm{answers}\:\mathrm{while}\:\mathrm{others}\:\mathrm{give}\:\mathrm{rude} \\ $$$$\mathrm{comments}\:\mathrm{with}\:\mathrm{no}\:\mathrm{reason}\:\mathrm{behind}\:\mathrm{them}. \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{just}\:\mathrm{want}\:\mathrm{to}\:\mathrm{urge}\:\mathrm{the}\:\mathrm{Maths}\:\mathrm{editor}\:\mathrm{users}\:\mathrm{to}\:\mathrm{show} \\ $$$$\mathrm{more}\:\mathrm{respect}\:\mathrm{for}\:\mathrm{others}\:\mathrm{since}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{or} \\ $$$$\mathrm{qualification}\:\mathrm{of}\:\mathrm{people}\:\mathrm{who}\:\mathrm{post}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{questions}\:\mathrm{here}. \\ $$$$\mathrm{we}\:\mathrm{remain}\:\mathrm{one}\:\mathrm{family}\:\mathrm{as}\:\mathrm{God}\:\mathrm{guides}\:\mathrm{us}\:\mathrm{through}\:\mathrm{our}\:\mathrm{endervous}. \\ $$

Question Number 97803    Answers: 1   Comments: 0

The annual salaries of employees in a large company are approximately normally disributed with a mean of $50,000 and a standard deviation of $20,000. a. what percent of people earn less than $40,000? b. what percent of people earn between $45,000 and $65,000? c. what percent of people earn more than $70,000?

$$\mathrm{The}\:\mathrm{annual}\:\mathrm{salaries}\:\mathrm{of}\:\mathrm{employees}\:\mathrm{in}\:\mathrm{a}\:\mathrm{large} \\ $$$$\mathrm{company}\:\mathrm{are}\:\mathrm{approximately}\:\mathrm{normally}\: \\ $$$$\mathrm{disributed}\:\mathrm{with}\:\mathrm{a}\:\mathrm{mean}\:\mathrm{of}\:\$\mathrm{50},\mathrm{000}\:\mathrm{and}\:\mathrm{a}\:\mathrm{standard} \\ $$$$\mathrm{deviation}\:\mathrm{of}\:\$\mathrm{20},\mathrm{000}. \\ $$$$\mathrm{a}.\:\mathrm{what}\:\mathrm{percent}\:\mathrm{of}\:\mathrm{people}\:\mathrm{earn}\:\mathrm{less}\:\mathrm{than} \\ $$$$\$\mathrm{40},\mathrm{000}? \\ $$$$\mathrm{b}.\:\mathrm{what}\:\mathrm{percent}\:\mathrm{of}\:\mathrm{people}\:\mathrm{earn}\:\mathrm{between} \\ $$$$\$\mathrm{45},\mathrm{000}\:\mathrm{and}\:\$\mathrm{65},\mathrm{000}? \\ $$$$\mathrm{c}.\:\mathrm{what}\:\mathrm{percent}\:\mathrm{of}\:\mathrm{people}\:\mathrm{earn}\:\mathrm{more}\:\mathrm{than} \\ $$$$\$\mathrm{70},\mathrm{000}? \\ $$

Question Number 97606    Answers: 1   Comments: 0

given that the polynomial p(x)=(3x+2)(x−1)q(x)−2x−4 of degree 3 is exactly divisible by x−2 and that p(−1)=−12. find q(x).

$${given}\:{that}\:{the}\:{polynomial}\:{p}\left({x}\right)=\left(\mathrm{3}{x}+\mathrm{2}\right)\left({x}−\mathrm{1}\right){q}\left({x}\right)−\mathrm{2}{x}−\mathrm{4} \\ $$$${of}\:{degree}\:\mathrm{3}\:{is}\:{exactly}\:{divisible}\:{by}\:{x}−\mathrm{2}\:{and}\: \\ $$$${that}\:{p}\left(−\mathrm{1}\right)=−\mathrm{12}.\:{find}\:{q}\left({x}\right). \\ $$

Question Number 97478    Answers: 0   Comments: 0

Find the global parametrization of the curve { x^2 +y^2 +z^2 =1; x+y−z=0 }

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{global}\:\mathrm{parametrization} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\left\{\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{1};\:\mathrm{x}+\mathrm{y}−\mathrm{z}=\mathrm{0}\:\right\}\: \\ $$

Question Number 97129    Answers: 0   Comments: 0

Given z=x+iy z∈C z≠0 1\ A, B, and C are the images of z, iz, and (2−i)+z a\ Calculate the lengths AB, AC, and BC. b\ Deduce that the triangle ABC is isosceles and not equilateral. 2\Find z, such that ∣z∣=∣((2+i)/z)∣=∣z−1∣ 3\Given Z, Z∈C such that ((Z−1)/(Z+1))=(((z−1)/(z+1)))^2 a\Express Z in terms of z b\What can we say of the images of Z, z, and (1/z) ?

$$\mathrm{Given}\:\:\mathrm{z}=\mathrm{x}+\mathrm{iy}\:\:\mathrm{z}\in\mathbb{C}\:\:\mathrm{z}\neq\mathrm{0} \\ $$$$\mathrm{1}\backslash\:\mathrm{A},\:\mathrm{B},\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{z},\:\mathrm{iz},\:\mathrm{and}\:\left(\mathrm{2}−\mathrm{i}\right)+\mathrm{z} \\ $$$$\mathrm{a}\backslash\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{AB},\:\mathrm{AC},\:\mathrm{and}\:\mathrm{BC}. \\ $$$$\mathrm{b}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{and}\:\mathrm{not} \\ $$$$\mathrm{equilateral}. \\ $$$$\mathrm{2}\backslash\mathrm{Find}\:\mathrm{z},\:\mathrm{such}\:\mathrm{that}\:\mid\mathrm{z}\mid=\mid\frac{\mathrm{2}+\mathrm{i}}{\mathrm{z}}\mid=\mid\mathrm{z}−\mathrm{1}\mid \\ $$$$\mathrm{3}\backslash\mathrm{Given}\:\mathrm{Z},\:\mathrm{Z}\in\mathbb{C}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{Z}−\mathrm{1}}{\mathrm{Z}+\mathrm{1}}=\left(\frac{\mathrm{z}−\mathrm{1}}{\mathrm{z}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{a}\backslash\mathrm{Express}\:\mathrm{Z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{z} \\ $$$$\mathrm{b}\backslash\mathrm{What}\:\mathrm{can}\:\mathrm{we}\:\mathrm{say}\:\mathrm{of}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{Z},\:\mathrm{z},\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{z}}\:? \\ $$

Question Number 96764    Answers: 1   Comments: 5

A particle P of mass m, is projected vertically upward with a speed u from a point A, on horizontal ground. When P is at x above its initial position, its speed is v. The only forces acting on P is its weight and resistance mgkv^2 . where k is a positive constant. (a) Show that the greatest height reached is (1/(2gk)) ln(1 +ku^2 ). (b) show that the speed with which P returns to A is (u/(√(1+ ku^2 ))) .

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{P}\:\mathrm{of}\:\mathrm{mass}\:{m},\:\mathrm{is}\:\mathrm{projected}\:\mathrm{vertically}\:\mathrm{upward}\:\mathrm{with} \\ $$$$\mathrm{a}\:\mathrm{speed}\:{u}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:{A},\:\mathrm{on}\:\mathrm{horizontal}\:\mathrm{ground}.\:\mathrm{When}\:\mathrm{P}\:\mathrm{is}\:\mathrm{at}\:{x}\:\mathrm{above} \\ $$$$\mathrm{its}\:\mathrm{initial}\:\mathrm{position},\:\mathrm{its}\:\mathrm{speed}\:\mathrm{is}\:{v}.\:\mathrm{The}\:\mathrm{only}\:\mathrm{forces}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{P}\:\mathrm{is} \\ $$$$\mathrm{its}\:\mathrm{weight}\:\mathrm{and}\:\mathrm{resistance}\:{m}\mathrm{g}{kv}^{\mathrm{2}} .\:\mathrm{where}\:{k}\:\mathrm{is}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{constant}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{height}\:\mathrm{reached}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2g}{k}}\:\mathrm{ln}\left(\mathrm{1}\:+{ku}^{\mathrm{2}} \right). \\ $$$$\left(\mathrm{b}\right)\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{with}\:\mathrm{which}\:\mathrm{P}\:\mathrm{returns}\:\mathrm{to}\:\mathrm{A}\:\mathrm{is}\:\frac{{u}}{\sqrt{\mathrm{1}+\:{ku}^{\mathrm{2}} }}\:. \\ $$

Question Number 96761    Answers: 0   Comments: 0

A particle P moving at constant angular velocity describes a part y = f(θ). At time t = 0, the particle is at the point with coordinate (a,(π/2)) and moving with a transverse acceleration of −2aω^2 sinθ. find the polar equation of the curve described by this particle.Show that the radial component of the acceleration of P is −aω^2 (1 + cos θ).

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{P}\:\:\:\mathrm{moving}\:\mathrm{at}\:\mathrm{constant}\:\mathrm{angular}\:\mathrm{velocity} \\ $$$$\mathrm{describes}\:\mathrm{a}\:\mathrm{part}\:{y}\:=\:{f}\left(\theta\right).\:\mathrm{At}\:\mathrm{time}\:{t}\:=\:\mathrm{0},\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{with}\:\mathrm{coordinate}\:\left({a},\frac{\pi}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\: \\ $$$$\mathrm{transverse}\:\mathrm{acceleration}\:\mathrm{of}\:−\mathrm{2}{a}\omega^{\mathrm{2}} \:\mathrm{sin}\theta.\:\mathrm{find}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{described}\:\mathrm{by}\:\mathrm{this}\:\mathrm{particle}.\mathrm{Show}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{radial}\:\mathrm{component}\:\mathrm{of}\:\mathrm{the}\:\:\mathrm{acceleration}\:\:\mathrm{of}\:\mathrm{P}\:\mathrm{is}\:−{a}\omega^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{cos}\:\theta\right). \\ $$

Question Number 96671    Answers: 1   Comments: 0

Question Number 96667    Answers: 2   Comments: 0

Prove that Σ_(k=1) ^∞ (1/k^2 )=(π^2 /6)

$$\mathcal{P}\mathrm{rove}\:\:\mathrm{that}\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Question Number 96358    Answers: 0   Comments: 0

Question Number 96290    Answers: 0   Comments: 1

If : tan(x +iy) = a + bi then find a,b

$${If}\::\:\mathrm{tan}\left({x}\:+{iy}\right)\:=\:{a}\:+\:{bi}\: \\ $$$${then}\:{find}\:{a},{b} \\ $$

Question Number 96108    Answers: 0   Comments: 0

are the system (z,+,≤)is orderd integral domain ?

$${are}\:{the}\:{system}\:\left({z},+,\leqslant\right){is}\:{orderd}\:{integral}\:{domain}\:? \\ $$

Question Number 96052    Answers: 1   Comments: 0

Question Number 96041    Answers: 1   Comments: 0

if f(x)=3^x^(2+x^3 ) find f′(x)?

$${if}\:{f}\left({x}\right)=\mathrm{3}^{{x}^{\mathrm{2}+{x}^{\mathrm{3}} } } \:\:\:{find}\:{f}'\left({x}\right)? \\ $$

Question Number 96008    Answers: 0   Comments: 1

((1−(1/a))/(a^2 −(1/a^2 )))

$$\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{a}}}{\mathrm{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }} \\ $$

Question Number 96007    Answers: 0   Comments: 1

((9x^2 +4a^2 )/(9x^2 −4a^2 )) +((3x)/(3x+2a)) −((2a)/(2a−3x))

$$\frac{\mathrm{9x}^{\mathrm{2}} +\mathrm{4a}^{\mathrm{2}} }{\mathrm{9x}^{\mathrm{2}} −\mathrm{4a}^{\mathrm{2}} }\:+\frac{\mathrm{3x}}{\mathrm{3x}+\mathrm{2a}}\:−\frac{\mathrm{2a}}{\mathrm{2a}−\mathrm{3x}} \\ $$

Question Number 96026    Answers: 0   Comments: 1

sin (p/x)=1

$$\mathrm{sin}\:\frac{\mathrm{p}}{\mathrm{x}}=\mathrm{1} \\ $$

Question Number 95670    Answers: 0   Comments: 0

Question Number 95604    Answers: 1   Comments: 3

Question Number 95473    Answers: 1   Comments: 0

Question Number 95420    Answers: 0   Comments: 7

tinkutara admint I want to update to version 2.074

$$\mathrm{tinkutara}\:\mathrm{admint} \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{update}\:\mathrm{to}\:\mathrm{version}\:\mathrm{2}.\mathrm{074} \\ $$

Question Number 95259    Answers: 1   Comments: 1

find all roots ((√6) −(√2)i)^(1/3) by using demover theorem ?

$${find}\:{all}\:{roots}\:\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{2}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {by}\:{using}\:{demover}\:{theorem}\:? \\ $$

Question Number 95121    Answers: 1   Comments: 1

  Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com