Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 60

Question Number 99994    Answers: 1   Comments: 0

1+(1/(16))+(1/(81))+(1/(256))+.....∞

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{81}}+\frac{\mathrm{1}}{\mathrm{256}}+.....\infty \\ $$

Question Number 99975    Answers: 1   Comments: 0

((1/2))^(((1/3))^((1/4)....∞) ) =?

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}....\infty} } =? \\ $$

Question Number 99962    Answers: 1   Comments: 0

A particle Q moves in a plane and its polar coordinate (r,θ) are described by r = at^2 and θ = (1/3)t^4 find its speed at t = 2s

$$\mathrm{A}\:\mathrm{particle}\:{Q}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{its}\:\mathrm{polar}\:\mathrm{coordinate}\:\left({r},\theta\right) \\ $$$$\mathrm{are}\:\mathrm{described}\:\mathrm{by}\:{r}\:=\:{at}^{\mathrm{2}} \:\mathrm{and}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{4}} \:\mathrm{find}\:\mathrm{its} \\ $$$$\mathrm{speed}\:\mathrm{at}\:{t}\:=\:\mathrm{2s} \\ $$

Question Number 99892    Answers: 0   Comments: 0

solve the equation xa^(1/x) +(1/x)a^x =2a Where a{−1,0,1}

$${solve}\:{the}\:{equation} \\ $$$${xa}^{\frac{\mathrm{1}}{{x}}} +\frac{\mathrm{1}}{{x}}{a}^{{x}} =\mathrm{2}{a} \\ $$$${Where}\:{a}\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\} \\ $$

Question Number 99889    Answers: 1   Comments: 0

1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+.......∞{Find the sum}

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{7}}+.......\infty\left\{\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\right\} \\ $$

Question Number 99853    Answers: 2   Comments: 0

(1/1^2 )+(1/2^2 )+(1/3^2 )+(1/4^2 )+(1/6^2 )+.....∞=?

$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{2}} }+.....\infty=? \\ $$

Question Number 99670    Answers: 0   Comments: 2

Question Number 99669    Answers: 0   Comments: 0

Question Number 99623    Answers: 1   Comments: 1

obtain the modulus and arguement of (((1−i)^4 )/((2+2(√(3i)^3 ))))

$${obtain}\:{the}\:{modulus}\:{and}\:{arguement}\:{of} \\ $$$$\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{4}} }{\left(\mathrm{2}+\mathrm{2}\sqrt{\left.\mathrm{3}{i}\right)^{\mathrm{3}} }\right.} \\ $$

Question Number 99568    Answers: 1   Comments: 4

Find the value of (√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))...∞ by cos function

$${Find}\:{the}\:{value}\:{of}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}...\infty\:\:\:\:\:{by}\:{cos}\:{function} \\ $$

Question Number 99485    Answers: 2   Comments: 0

∫tan^(1/5) xdx

$$\int{tan}^{\frac{\mathrm{1}}{\mathrm{5}}} {xdx} \\ $$

Question Number 99411    Answers: 0   Comments: 2

Solve the equation xa^(1/x) +(1/x)a^x =2a where,a{−1,0,1}

$${Solve}\:{the}\:{equation} \\ $$$${xa}^{\frac{\mathrm{1}}{{x}}} +\frac{\mathrm{1}}{{x}}{a}^{{x}} =\mathrm{2}{a} \\ $$$${where},{a}\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\} \\ $$

Question Number 99368    Answers: 0   Comments: 1

please sir my problem in my solution is where?

$${please}\:{sir}\:{my}\:{problem}\:{in}\:{my}\:{solution} \\ $$$${is}\:{where}? \\ $$

Question Number 99314    Answers: 0   Comments: 2

Find[]the[]value[]of (√(1+2(√(1+3(√(1+4(√(1+5(√(1+6(√(1+7))))))))))))....∞

$${Find}\left[\right]{the}\left[\right]{value}\left[\right]{of} \\ $$$$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{3}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{\mathrm{1}+\mathrm{6}\sqrt{\mathrm{1}+\mathrm{7}}}}}}}....\infty \\ $$

Question Number 99097    Answers: 0   Comments: 1

Hello verry nice day for all of you god bless You pleas Can you use black Color shen You post Quation or Give answer is verry hard to read withe other colors

$${Hello}\: \\ $$$${verry}\:{nice}\:{day}\:{for}\:{all}\:{of}\:{you}\:{god}\:{bless}\:{You} \\ $$$${pleas}\:{Can}\:{you}\:{use}\:{black}\:{Color}\:{shen}\:{You}\:{post}\:{Quation}\: \\ $$$${or}\:{Give}\:{answer}\:{is}\:{verry}\:{hard}\:{to}\:{read}\:{withe}\:{other}\:{colors} \\ $$

Question Number 98953    Answers: 2   Comments: 0

Given f(x)=sin^2 x find the expansion of f(x) up to the n^(th) term.

$$\mathcal{G}\mathrm{iven}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{find}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}. \\ $$

Question Number 98924    Answers: 0   Comments: 0

Prove that if a+ bi is a root to pz^2 + qz + r = 0 , where a,b,p,q,r ∈R then a−bi is also a root to that equation.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{a}+\:{bi}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{to} \\ $$$$\:{pz}^{\mathrm{2}} \:+\:{qz}\:+\:{r}\:=\:\mathrm{0}\:,\:\mathrm{where}\:{a},{b},{p},{q},{r}\:\in\mathbb{R} \\ $$$$\mathrm{then}\:{a}−{bi}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{root}\:\mathrm{to}\:\mathrm{that}\:\mathrm{equation}. \\ $$

Question Number 98887    Answers: 0   Comments: 0

Question Number 98673    Answers: 2   Comments: 0

find a_n in terms of n (I can′t find it...) a_1 =1; a_2 =4 a_3 =a_2 ×4×((2^2 −1)/2^2 ) a_4 =a_3 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 ) a_5 =a_4 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )×((4^2 −1)/4^2 ) ... n≥2: a_(n+1) =4a_n Π_(k=2) ^n ((k^2 −1)/k^2 )

$$\mathrm{find}\:{a}_{{n}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n} \\ $$$$\left(\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}...\right) \\ $$$${a}_{\mathrm{1}} =\mathrm{1};\:{a}_{\mathrm{2}} =\mathrm{4} \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{2}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{4}} ={a}_{\mathrm{3}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{5}} ={a}_{\mathrm{4}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }×\frac{\mathrm{4}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}^{\mathrm{2}} } \\ $$$$... \\ $$$${n}\geqslant\mathrm{2}:\:{a}_{{n}+\mathrm{1}} =\mathrm{4}{a}_{{n}} \underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$

Question Number 98640    Answers: 0   Comments: 1

Question Number 98638    Answers: 0   Comments: 2

Le plan complexe est rapporte^ a^ un repe^ re orthornorme directe (0,e_1 ^→ ,e_2 ^→ ). On note A et B les points d′affixes respectives i, et 2i. Soit f, l′application du plan prive^ de A dans lui-me^ me qui a^ tout point M d′affixe z distincte i associe le point M d′affixe z′ definie par: z′=((2z−i)/(iz+1)) 1\ Soit z≠i a\ On pose z−i=re^(iθ) . Interpreter ge^ ometriquement r et θ a^ l′aide des points A et M.

$$\mathrm{Le}\:\mathrm{plan}\:\mathrm{complexe}\:\mathrm{est}\:\mathrm{rapport}\acute {\mathrm{e}}\:\grave {\mathrm{a}}\:\mathrm{un}\:\mathrm{rep}\grave {\mathrm{e}re} \\ $$$$\mathrm{orthornorme}\:\mathrm{directe}\:\left(\mathrm{0},\overset{\rightarrow} {\mathrm{e}}_{\mathrm{1}} ,\overset{\rightarrow} {\mathrm{e}}_{\mathrm{2}} \right).\:\mathcal{O}\mathrm{n}\:\mathrm{note}\:\mathrm{A}\:\mathrm{et}\:\mathrm{B}\:\mathrm{les} \\ $$$$\mathrm{points}\:\mathrm{d}'\mathrm{affixes}\:\mathrm{respectives}\:\boldsymbol{\mathrm{i}},\:\mathrm{et}\:\mathrm{2}\boldsymbol{\mathrm{i}}.\:\mathrm{Soit}\:\mathrm{f},\:\mathrm{l}'\mathrm{application} \\ $$$$\mathrm{du}\:\mathrm{plan}\:\mathrm{priv}\acute {\mathrm{e}}\:\mathrm{de}\:\mathrm{A}\:\mathrm{dans}\:\mathrm{lui}-\mathrm{m}\hat {\mathrm{e}me}\:\mathrm{qui}\:\grave {\mathrm{a}}\:\mathrm{tout}\:\mathrm{point} \\ $$$$\mathrm{M}\:\mathrm{d}'\mathrm{affixe}\:\mathrm{z}\:\mathrm{distincte}\:\boldsymbol{\mathrm{i}}\:\mathrm{associe}\:\mathrm{le}\:\mathrm{point}\:\mathrm{M}\:\mathrm{d}'\mathrm{affixe} \\ $$$$\boldsymbol{\mathrm{z}}'\:\mathrm{definie}\:\mathrm{par}:\:\mathrm{z}'=\frac{\mathrm{2z}−\mathrm{i}}{\mathrm{iz}+\mathrm{1}} \\ $$$$\mathrm{1}\backslash\:\mathrm{Soit}\:\mathrm{z}\neq\mathrm{i} \\ $$$$\mathrm{a}\backslash\:\mathrm{On}\:\mathrm{pose}\:\mathrm{z}−\mathrm{i}=\mathrm{re}^{\mathrm{i}\theta} .\:\mathcal{I}\mathrm{nterpreter}\:\mathrm{g}\acute {\mathrm{e}ometriquement}\:\mathrm{r}\:\mathrm{et}\:\theta \\ $$$$\grave {\mathrm{a}}\:\mathrm{l}'\mathrm{aide}\:\mathrm{des}\:\mathrm{points}\:\mathrm{A}\:\mathrm{et}\:\mathrm{M}. \\ $$

Question Number 98620    Answers: 1   Comments: 0

how do i make use of the function gamma(n). example, gamma(n)=∫_0 ^∞ x^(n−1) e^(−x) dx? instead of typing gamma(n). i can′t find it in the app.

$$\boldsymbol{{how}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{make}}\:\boldsymbol{{use}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{function}} \\ $$$$\boldsymbol{{gamma}}\left(\boldsymbol{{n}}\right). \\ $$$$\boldsymbol{{example}},\:\boldsymbol{{gamma}}\left(\boldsymbol{{n}}\right)=\underset{\mathrm{0}} {\overset{\infty} {\int}}\boldsymbol{{x}}^{\boldsymbol{{n}}−\mathrm{1}} \boldsymbol{{e}}^{−\boldsymbol{{x}}} \boldsymbol{{dx}}? \\ $$$$\boldsymbol{{instead}}\:\boldsymbol{{of}}\:\boldsymbol{{typing}}\:\boldsymbol{{gamma}}\left(\boldsymbol{{n}}\right). \\ $$$$\boldsymbol{{i}}\:\boldsymbol{{can}}'\boldsymbol{{t}}\:\boldsymbol{{find}}\:\boldsymbol{{it}}\:\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{app}}. \\ $$

Question Number 98468    Answers: 2   Comments: 10

Question Number 98443    Answers: 1   Comments: 0

Given the sequence (U_n )_(n∈N) defined by U_0 =1 and U_(n+1) =f(U_n ) where f(x)=(x/((x+1)^2 )) Show by mathematical induction that ∀n∈N^∗ 0<U_n ≤(1/n)

$$\mathcal{G}\mathrm{iven}\:\mathrm{the}\:\mathrm{sequence}\:\left(\mathrm{U}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{defined}\:\mathrm{by}\:\mathrm{U}_{\mathrm{0}} =\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{U}_{\mathrm{n}+\mathrm{1}} =\mathrm{f}\left(\mathrm{U}_{\mathrm{n}} \right)\:\mathrm{where}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$$\mathcal{S}\mathrm{how}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{0}<\mathrm{U}_{\mathrm{n}} \leqslant\frac{\mathrm{1}}{\mathrm{n}} \\ $$

Question Number 98320    Answers: 1   Comments: 0

Question Number 98208    Answers: 0   Comments: 2

suppose a force given as F_1 = 24 N and F_2 = 50 N act through points AB and AC where OA = 2i +3j , OB = 5i + 6j and OC = 7i + 8j (a) find in vector notation F_1 and F_2 then find thier resultant.

$$\mathrm{suppose}\:\mathrm{a}\:\mathrm{force}\:\mathrm{given}\:\mathrm{as}\:{F}_{\mathrm{1}} \:=\:\mathrm{24}\:{N}\:\mathrm{and}\:{F}_{\mathrm{2}} \:=\:\mathrm{50}\:{N}\:\mathrm{act}\:\mathrm{through}\: \\ $$$$\mathrm{points}\:{AB}\:\mathrm{and}\:{AC}\:\mathrm{where}\:\:{OA}\:=\:\mathrm{2}{i}\:+\mathrm{3}{j}\:,\:{OB}\:=\:\mathrm{5}{i}\:+\:\mathrm{6}{j}\:\:\mathrm{and}\: \\ $$$${OC}\:=\:\mathrm{7}{i}\:+\:\mathrm{8}{j} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{in}\:\mathrm{vector}\:\mathrm{notation}\:{F}_{\mathrm{1}} \:\mathrm{and}\:{F}_{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{thier}\:\mathrm{resultant}. \\ $$

  Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com