Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 59
Question Number 101473 Answers: 1 Comments: 0
Question Number 101330 Answers: 0 Comments: 5
$${Evaluate}. \\ $$$$\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx} \\ $$
Question Number 101329 Answers: 1 Comments: 0
Question Number 101252 Answers: 0 Comments: 1
$$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{\mathrm{1}+\mathrm{6}\sqrt{\mathrm{1}+\mathrm{7}\sqrt{\mathrm{1}+\mathrm{8}..}}}}}}\infty=? \\ $$
Question Number 101250 Answers: 0 Comments: 0
Question Number 101247 Answers: 1 Comments: 0
Question Number 101243 Answers: 0 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\:\:\mathrm{xa}^{\frac{\mathrm{1}}{\mathrm{x}}} +\frac{\mathrm{1}}{\mathrm{x}}\mathrm{a}^{\mathrm{x}} =\mathrm{2a}\:\:\:\mathrm{a}\in\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\}\:\:\:{and}\:{also}\:{find}\:{when}\:{a}\:\:{is}\:{not}\:{given} \\ $$
Question Number 101231 Answers: 1 Comments: 1
Question Number 101159 Answers: 1 Comments: 0
$${given}\:{the}\:{complex}\:{number}\:{z}\:{such}\:{that} \\ $$$${z}−\mathrm{4}{i}={a}+\mathrm{3}{zi}.\: \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{if}\:\:{z}\:{is}\:{purwly}\:{imaginary} \\ $$$$ \\ $$
Question Number 101026 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}}{{e}^{\:\mathrm{sin}{x}\:−{x}} } \\ $$
Question Number 100986 Answers: 0 Comments: 1
Question Number 100985 Answers: 0 Comments: 3
Question Number 100943 Answers: 1 Comments: 0
$$\mathcal{D}\mathrm{etermine}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}; \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{5}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} −\mathrm{1}} \\ $$
Question Number 100916 Answers: 1 Comments: 0
$${solve}\:{the}\:{eqution}\:: \\ $$$$\frac{\mathrm{2}\:+\:{x}}{\mathrm{12}\:+\:\mathrm{4}{x}}\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{x}} \:\:\:\:\:\:\:.,{x}\:=\mathrm{2}\: \\ $$
Question Number 100904 Answers: 3 Comments: 3
$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\left[\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)......\mathrm{3}{n}}{{n}^{\mathrm{2}{n}} }\right]^{\frac{\mathrm{1}}{{n}}} \\ $$
Question Number 100785 Answers: 1 Comments: 0
Question Number 100744 Answers: 0 Comments: 17
$$\mathrm{Happy}\:\boldsymbol{\mathrm{tau}}\:\boldsymbol{\mathrm{day}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{all}}\:!!! \\ $$$$ \\ $$$$\mathrm{28}\:{june}\: \\ $$
Question Number 100624 Answers: 1 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}...\infty\:\mathrm{using}\:\mathrm{cos}\:\mathrm{function} \\ $$
Question Number 100539 Answers: 0 Comments: 2
$$\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{3}^{{n}} }{{n}} \\ $$
Question Number 100442 Answers: 0 Comments: 5
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\:\:\mathrm{log}\left(−\mathrm{2}\right)\:\:\left\{\mathrm{imaginary}\right\} \\ $$
Question Number 100482 Answers: 1 Comments: 0
$$\sqrt{\mathrm{1}\sqrt{\mathrm{2}\sqrt{\mathrm{3}\sqrt{\mathrm{4}\sqrt{\mathrm{5}\sqrt{\mathrm{6}\sqrt{\mathrm{7}}}}}}}}.....\infty=??????? \\ $$
Question Number 100295 Answers: 0 Comments: 0
$${a}\:{relation}\:{R}\:{is}\:{defined}\:{on}\:{the}\:{set}\:{of}\:{real} \\ $$$${numbers}\:{by}\:{xRy}\:{if}\:{and}\:{only}\:{if}\:{x}−{y}\:{is}\:{a}\: \\ $$$${multiple}\:{of}\:\mathrm{3}.\:{show}\:{that}\:{R}\:{is}\:{transitive} \\ $$
Question Number 100240 Answers: 2 Comments: 9
$$\mathrm{Find}\:\:\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}\:\mathrm{such}\:\:\mathrm{that}; \\ $$$$\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}^{\mathrm{2}} −\mathrm{xy}+\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$ \\ $$$${updated}\:{from}\:\frac{\mathrm{2}}{\mathrm{7}}\rightarrow\frac{\mathrm{7}}{\mathrm{2}}.\:{Sorry},\:{it}\:{was}\:{a}\:{mistake}. \\ $$
Question Number 100097 Answers: 0 Comments: 1
$$\int\left({tanx}\right)^{{e}^{{i}\pi} } {dx} \\ $$
Question Number 100000 Answers: 2 Comments: 1
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{243}}+\frac{\mathrm{1}}{\mathrm{1024}}+...\infty \\ $$
Question Number 99997 Answers: 0 Comments: 2
Pg 54 Pg 55 Pg 56 Pg 57 Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63
Terms of Service
Privacy Policy
Contact: info@tinkutara.com