Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 59

Question Number 106329    Answers: 2   Comments: 0

find ∫_(−5) ^5 ((√(25−x^2 )))dx whithout using trigonometric compensation

$${find}\:\int_{−\mathrm{5}} ^{\mathrm{5}} \left(\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }\right){dx}\:\:{whithout}\:{using} \\ $$$${trigonometric}\:{compensation} \\ $$

Question Number 106318    Answers: 0   Comments: 0

∫_0 ^(log(2)) ((e^x −4)/(x +2))dx = ..... {(a)log(2) (b)1−log(2) (c) 1−2log(2) (d)−log(2)}

$$\int_{\mathrm{0}} ^{\mathrm{log}\left(\mathrm{2}\right)} \frac{{e}^{{x}} \:−\mathrm{4}}{{x}\:+\mathrm{2}}{dx}\:\:\:=\:..... \\ $$$$\left\{\left({a}\right){log}\left(\mathrm{2}\right)\:\:\:\:\:\:\:\left({b}\right)\mathrm{1}−{log}\left(\mathrm{2}\right)\:\:\:\:\:\:\:\left({c}\right)\right. \\ $$$$\left.\mathrm{1}−\mathrm{2}{log}\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\left({d}\right)−{log}\left(\mathrm{2}\right)\right\} \\ $$

Question Number 106163    Answers: 0   Comments: 0

Question Number 106039    Answers: 3   Comments: 0

if (f o g )(x) = x and f′(x)=1 + (f(x))^2 then g′(2) = ....

$${if}\:\:\left({f}\:{o}\:{g}\:\right)\left({x}\right)\:=\:{x}\:\:{and}\:{f}'\left({x}\right)=\mathrm{1}\:+\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \\ $$$${then}\:{g}'\left(\mathrm{2}\right)\:=\:.... \\ $$$$ \\ $$

Question Number 105498    Answers: 1   Comments: 3

lim_(n→∞) (Π_(k=1) ^n ((1/k)))^(2/n)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{{k}}\right)\right)^{\frac{\mathrm{2}}{{n}}} \\ $$

Question Number 105488    Answers: 1   Comments: 0

if y = cos(x^2 ) then y^((n)) = .........

$${if}\:{y}\:=\:{cos}\left({x}^{\mathrm{2}} \right)\:\:\:\:\:\:{then}\: \\ $$$$\:\:\:\:\:\:{y}^{\left({n}\right)} \:=\:......... \\ $$

Question Number 105207    Answers: 1   Comments: 3

99−98((98)/(99)) = ? Can you solve this?

$$\mathrm{99}−\mathrm{98}\frac{\mathrm{98}}{\mathrm{99}}\:=\:? \\ $$$$\boldsymbol{{Can}}\:\boldsymbol{{you}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}? \\ $$

Question Number 105278    Answers: 1   Comments: 1

(1−(1/1))(1−(1/2))(1−(1/3)).....(1−(1/(100)))=?

$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right).....\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{100}}\right)=? \\ $$

Question Number 105130    Answers: 0   Comments: 0

To now the real sequence in the follwing image : a_1 =1 ,a_2 =2 a_(nk +1) = ((a_(2k−1) +a_(2k) )/2) ∀ k ∈ Z^+ a_(2k+2) = (√(a_(2k) a_(2k+1) )) then prove that : lim_(n→∞) a_n = ((3(√3))/π)

$${To}\:{now}\:{the}\:{real}\:{sequence}\:{in}\:{the} \\ $$$${follwing}\:{image}\:: \\ $$$${a}_{\mathrm{1}} =\mathrm{1}\:\:\:,{a}_{\mathrm{2}} =\mathrm{2} \\ $$$${a}_{{nk}\:+\mathrm{1}} \:=\:\frac{{a}_{\mathrm{2}{k}−\mathrm{1}} \:+{a}_{\mathrm{2}{k}} }{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\forall\:{k}\:\in\:{Z}^{+} \\ $$$${a}_{\mathrm{2}{k}+\mathrm{2}} \:=\:\sqrt{{a}_{\mathrm{2}{k}} \:{a}_{\mathrm{2}{k}+\mathrm{1}} } \\ $$$${then}\: \\ $$$${prove}\:{that}\::\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \:=\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\pi} \\ $$$$ \\ $$

Question Number 105080    Answers: 2   Comments: 0

solve: x((x^2 −1)!) = 5((x−1)!)

$${solve}: \\ $$$$\:{x}\left(\left({x}^{\mathrm{2}} −\mathrm{1}\right)!\right)\:=\:\mathrm{5}\left(\left({x}−\mathrm{1}\right)!\right) \\ $$

Question Number 105075    Answers: 1   Comments: 0

(7/?) = ((21)/(27)) = ((7/3)/?)

$$\frac{\mathrm{7}}{?}\:=\:\frac{\mathrm{21}}{\mathrm{27}}\:=\:\frac{\frac{\mathrm{7}}{\mathrm{3}}}{?} \\ $$

Question Number 104975    Answers: 0   Comments: 2

Dear Forum-Friends There′s a trend to make answers short in the forum. To follow this trend some friends are omitting key-steps and for this reason the answers become difficult to understand and many readers like me are compelled to leave out such answers at the price of no-understanding!!! So please omit only calculation steps in order to make your answers short-&-understandable.

$$\mathrm{Dear}\:\mathrm{Forum}-\mathrm{Friends} \\ $$$$\:\:\:\:\:\:\mathcal{T}{here}'{s}\:{a}\:{trend}\:{to}\:{make} \\ $$$${answers}\:{short}\:{in}\:{the}\:{forum}. \\ $$$$\:\:\:\:\:\:\:\mathcal{T}{o}\:{follow}\:{this}\:{trend}\:{some} \\ $$$${friends}\:{are}\:{omitting}\:\boldsymbol{{key}}-\boldsymbol{{steps}} \\ $$$${and}\:{for}\:{this}\:{reason}\:{the}\:{answers} \\ $$$${become}\:\boldsymbol{{difficult}}\:\boldsymbol{{to}} \\ $$$$\boldsymbol{{understand}}\:{and}\: \\ $$$${many}\:{readers}\:{like}\:{me} \\ $$$$\:{are}\:{compelled}\:{to}\:{leave}\:{out} \\ $$$${such}\:{answers}\:{at}\:{the}\:{price}\:{of} \\ $$$$\boldsymbol{{no}}-\boldsymbol{{understanding}}!!! \\ $$$$\mathcal{S}{o}\:{please}\:{omit}\:{only} \\ $$$$\boldsymbol{{calculation}}\:\boldsymbol{{steps}}\:{in}\:{order}\:{to} \\ $$$${make}\:{your}\:{answers} \\ $$$${short}-\&-{understandable}. \\ $$

Question Number 104948    Answers: 0   Comments: 0

Question Number 104940    Answers: 1   Comments: 1

Question Number 104789    Answers: 0   Comments: 1

if y^((n)) is the derivative of the function y of the order n, then ∫y^((n)) dx =........

$${if}\:{y}^{\left({n}\right)} \:{is}\:{the}\:{derivative}\:{of}\:{the}\:{function}\:{y} \\ $$$${of}\:{the}\:{order}\:{n},\:{then} \\ $$$$\int{y}^{\left({n}\right)} {dx}\:=........ \\ $$

Question Number 104783    Answers: 2   Comments: 0

find (d^n y/dx^n ) for f(x)^ =(1/(√(1−x)))

$${find}\:\frac{{d}^{{n}} {y}}{{dx}^{{n}} }\:{for}\:\:\:\:{f}\left({x}\overset{} {\right)}=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}}} \\ $$

Question Number 104777    Answers: 3   Comments: 0

Question Number 104768    Answers: 1   Comments: 0

((1/8)÷(1/8))((1/7)÷(1/7))((2/3)÷(2/3))= ?

$$\left(\frac{\mathrm{1}}{\mathrm{8}}\boldsymbol{\div}\frac{\mathrm{1}}{\mathrm{8}}\right)\left(\frac{\mathrm{1}}{\mathrm{7}}\boldsymbol{\div}\frac{\mathrm{1}}{\mathrm{7}}\right)\left(\frac{\mathrm{2}}{\mathrm{3}}\boldsymbol{\div}\frac{\mathrm{2}}{\mathrm{3}}\right)=\:? \\ $$

Question Number 104692    Answers: 2   Comments: 0

Question Number 104533    Answers: 3   Comments: 0

find : lim_(x→1) (((x+2)^2 +(x+1)^3 −17)/((√(x+3))−((x+7))^(1/3) ))

$${find}\:: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\left({x}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{17}}{\sqrt{{x}+\mathrm{3}}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{7}}} \\ $$

Question Number 104494    Answers: 0   Comments: 0

Question Number 104471    Answers: 1   Comments: 0

Σ_(n=1) ^∞ ((e^n n!)/n^n )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{n}} {n}!}{{n}^{{n}} } \\ $$

Question Number 104406    Answers: 1   Comments: 1

Evaluate (1/2) + (3/8) + (3/(16)) + (5/(64)) + .....

$$\:\:\:\:\mathrm{Evaluate} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{8}}\:+\:\frac{\mathrm{3}}{\mathrm{16}}\:+\:\frac{\mathrm{5}}{\mathrm{64}}\:+\:..... \\ $$

Question Number 104296    Answers: 0   Comments: 0

FUN TIME AGAIN! S_n =1+2+3+4+5+6+7+8+9+.. S_n =1+(2+3+4)+(5+6+7)+... S_n =1+9+18+27+... S_n =1+9(1+2+3+4+5+6+7.......) S_n =1+9S_n S_n =−(1/8) S_n =1−1+1−1+1−1+1−1+1−1+.. S=(1/2) S_n =1−2+4−8+16−32+..... S_n =(1/(1+2))=(1/3) S_n =1+2+4+8+16+... S_n =1+2(1+2+4+8+...) S_n =1+2(1+2(1+2+4+8+...) S_n =1+2(1+2S_n ) −3S_n =3⇒S_n =−1

$$ \\ $$$$ \\ $$$$\mathrm{FUN}\:\mathrm{TIME}\:\mathrm{AGAIN}! \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+.. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\left(\mathrm{2}+\mathrm{3}+\mathrm{4}\right)+\left(\mathrm{5}+\mathrm{6}+\mathrm{7}\right)+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}+\mathrm{18}+\mathrm{27}+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}.......\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9S}_{\mathrm{n}} \\ $$$$\mathrm{S}_{\mathrm{n}} =−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+.. \\ $$$$\mathrm{S}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+..... \\ $$$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+...\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+...\right)\right. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2S}_{\mathrm{n}} \right) \\ $$$$−\mathrm{3S}_{\mathrm{n}} =\mathrm{3}\Rightarrow\mathrm{S}_{\mathrm{n}} =−\mathrm{1} \\ $$

Question Number 104207    Answers: 2   Comments: 0

Question Number 104199    Answers: 2   Comments: 0

solve for real values of x the equation 4(3^(2x+1) )+17(3^x )=7. if m and n are positive real numbers other than 1, show that the log_n m+log_(1/m) n=0

$${solve}\:{for}\:{real}\:{values}\:{of}\:{x}\:{the}\:{equation} \\ $$$$\mathrm{4}\left(\mathrm{3}^{\mathrm{2}{x}+\mathrm{1}} \right)+\mathrm{17}\left(\mathrm{3}^{{x}} \right)=\mathrm{7}. \\ $$$${if}\:{m}\:{and}\:{n}\:{are}\:{positive}\:{real}\:{numbers}\:{other} \\ $$$${than}\:\mathrm{1},\:{show}\:{that}\:{the}\:\mathrm{log}_{{n}} {m}+\mathrm{log}_{\frac{\mathrm{1}}{{m}}} {n}=\mathrm{0} \\ $$

  Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com