Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 59

Question Number 109123    Answers: 0   Comments: 0

prove that : ∫_(π/4) ^((3π)/4) sin(x)−cos(x)dx ≥∫_π ^((3π)/2) sin(x)+cos(x)dx

$${prove}\:{that}\:: \\ $$$$\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} {sin}\left({x}\right)−{cos}\left({x}\right){dx}\:\geqslant\int_{\pi} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} {sin}\left({x}\right)+{cos}\left({x}\right){dx} \\ $$

Question Number 109119    Answers: 2   Comments: 0

if f(x^2 )=y ,f′(x)=(√(5x−1 )) then (dy/dx)=.....

$${if}\:{f}\left({x}^{\mathrm{2}} \right)={y}\:\:,{f}'\left({x}\right)=\sqrt{\mathrm{5}{x}−\mathrm{1}\:}\:{then}\: \\ $$$$\frac{{dy}}{{dx}}=..... \\ $$

Question Number 109117    Answers: 1   Comments: 0

Question Number 109082    Answers: 1   Comments: 0

prove that : ∫_(−(π/2)) ^(−(π/4)) 2cos(x)+sin(x)dx≤∫_(−(π/2)) ^(−(π/4)) cos(x)−sin(x)dx

$${prove}\:{that}\:: \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} \mathrm{2}{cos}\left({x}\right)+{sin}\left({x}\right){dx}\leqslant\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} {cos}\left({x}\right)−{sin}\left({x}\right){dx} \\ $$

Question Number 108951    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((n!)/n^n )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$

Question Number 108907    Answers: 1   Comments: 1

Three Catagories of Posts: Question , Answer & Comment Use Question for only questions. (Don′t use it for solutions & comments.)

$$\mathcal{T}{hree}\:\:\mathcal{C}{atagories}\:{of}\:\mathcal{P}{osts}: \\ $$$${Question}\:,\:\mathcal{A}{nswer}\:\&\:\mathcal{C}{omment} \\ $$$$ \\ $$$$\mathbb{U}\mathrm{se}\:{Question}\:\mathrm{for}\:\boldsymbol{\mathrm{only}}\:\mathrm{questions}. \\ $$$$\left(\mathcal{D}{on}'{t}\:{use}\:{it}\:{for}\:{solutions}\:\&\right. \\ $$$$\left.{comments}.\right) \\ $$

Question Number 108571    Answers: 2   Comments: 0

Question Number 108290    Answers: 0   Comments: 3

Why do all active content of forum of dates 12,13,14was disappear on my phone?

$$\mathrm{Why}\:\mathrm{do}\:\mathrm{all}\:\mathrm{active}\:\mathrm{content}\:\mathrm{of}\:\mathrm{forum}\:\mathrm{of} \\ $$$$\mathrm{dates}\:\mathrm{12},\mathrm{13},\mathrm{14was}\:\mathrm{disappear}\:\mathrm{on}\:\mathrm{my} \\ $$$$\mathrm{phone}? \\ $$

Question Number 108259    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((n!)/n^n )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$

Question Number 108239    Answers: 1   Comments: 0

((7/2))!=?

$$\left(\frac{\mathrm{7}}{\mathrm{2}}\right)!=? \\ $$$$ \\ $$

Question Number 107929    Answers: 0   Comments: 0

(1/(1+2^2 +3^3 ))+(1/(2^2 +3^3 +4^4 ))+(1/(3^3 +4^4 +5^5 ))+....

$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} +\mathrm{5}^{\mathrm{5}} }+.... \\ $$

Question Number 107783    Answers: 0   Comments: 1

Σ_(n=1) ^∞ (1/(n2^n ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} } \\ $$

Question Number 107741    Answers: 0   Comments: 2

Question Number 107704    Answers: 0   Comments: 0

Question Number 107628    Answers: 0   Comments: 0

Question Number 107533    Answers: 2   Comments: 0

The position as a function of time x(t) for a particle in motion is given as x(t) = (3 m/s^2 )t^2 . Find the velocity of this particle as a function of time.

$$\mathrm{The}\:\mathrm{position}\:\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}\:{x}\left({t}\right)\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in} \\ $$$$\mathrm{motion}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}\:\:{x}\left({t}\right)\:=\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right){t}^{\mathrm{2}} \:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{particle}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}. \\ $$

Question Number 107512    Answers: 0   Comments: 3

I seen that the function insert separator (right and left)don′t work,ask Titurkara fix this problem!

$$\mathrm{I}\:\mathrm{seen}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{insert}\:\mathrm{separator}\:\left(\mathrm{right}\:\mathrm{and}\:\mathrm{left}\right)\mathrm{don}'\mathrm{t}\: \\ $$$$\mathrm{work},\mathrm{ask}\:\mathrm{Titurkara}\:\mathrm{fix}\:\mathrm{this}\:\mathrm{problem}! \\ $$

Question Number 107420    Answers: 1   Comments: 1

Question Number 107403    Answers: 0   Comments: 0

Question Number 107367    Answers: 0   Comments: 0

Question Number 107362    Answers: 0   Comments: 1

∫_0 ^∞ x^π e^(−x) dx

$$\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\pi} \mathrm{e}^{−\mathrm{x}} \mathrm{dx} \\ $$

Question Number 107353    Answers: 2   Comments: 0

If a b 13 c d 25 are six consecutive terms of an AP .find tbe value of a b c and d.

$${If}\:\mathrm{a}\:\mathrm{b}\:\mathrm{13}\:\mathrm{c}\:\mathrm{d}\:\mathrm{25}\:\mathrm{are}\:\mathrm{six}\:\mathrm{consecutive}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}{P}\:.{find}\:{tbe}\:{value}\:{of}\:{a}\:{b}\:{c}\:{and}\:{d}. \\ $$

Question Number 107264    Answers: 2   Comments: 1

∫_0 ^∞ ⌊(1/x^2 )⌋dx

$$\int_{\mathrm{0}} ^{\infty} \lfloor\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\rfloor\mathrm{dx} \\ $$

Question Number 107263    Answers: 0   Comments: 1

Σ_(n=1) ^n (√n)

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\mathrm{n}} \\ $$

Question Number 107187    Answers: 1   Comments: 3

Prove that (√8)=1+(3/4)+((3.5)/(4.8))+((3.5.7)/(4.8.12))+......

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{\mathrm{8}}=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}+\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}+...... \\ $$

Question Number 107178    Answers: 1   Comments: 1

  Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com