Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 58

Question Number 112430    Answers: 0   Comments: 0

Π_(n=1) ^∞ (1/(1−x^n ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{1}}{\mathrm{1}−{x}^{{n}} } \\ $$

Question Number 112245    Answers: 0   Comments: 0

(1/(1+x^2 ))+(1/(1+x^4 ))+(1/(1+x^8 ))+..... ( x>1)

$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{8}} }+.....\:\:\:\:\:\:\:\:\:\:\left(\:{x}>\mathrm{1}\right) \\ $$

Question Number 112162    Answers: 1   Comments: 3

Question Number 111975    Answers: 1   Comments: 0

Question Number 111957    Answers: 0   Comments: 31

“MATHEMATICS” CONTAINS ALL THE LETTERS OF “ETHICS”. IS THERE ANY LESSON FOR US IN ABOVE SAYING? FOR “math-lovers”? FOR “math-giants”? FOR “overflow-mathematicians”? ........ ...... _( BTW this saying belongs to me)

$$\:\:\:\:\:\:\:\:\:\:``\mathrm{MATHEMATICS}'' \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{CONTAINS} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{ALL}\:\mathrm{THE}\:\mathrm{LETTERS}\:\mathrm{OF} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:``\mathrm{ETHICS}''. \\ $$$$ \\ $$$$\mathrm{IS}\:\:\mathrm{THERE}\:\mathrm{ANY}\:\mathrm{LESSON}\:\mathrm{FOR}\:\mathrm{US} \\ $$$$\mathrm{IN}\:\mathrm{ABOVE}\:\mathrm{SAYING}? \\ $$$${FOR}\:``{math}-{lovers}''? \\ $$$${FOR}\:``{math}-{giants}''? \\ $$$${FOR}\:``{overflow}-{mathematicians}''? \\ $$$$........ \\ $$$$......\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:_{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{BTW}\:{this}\:{saying}\:{belongs}\:{to}\:{me}} \\ $$

Question Number 111774    Answers: 1   Comments: 0

Question Number 111668    Answers: 0   Comments: 6

Question Number 111643    Answers: 1   Comments: 0

((7/3))!(with out calculator)

$$\left(\frac{\mathrm{7}}{\mathrm{3}}\right)!\left({with}\:{out}\:{calculator}\right) \\ $$

Question Number 111536    Answers: 2   Comments: 2

Let 2,3,5,6,7,10,11,... be increasing sequence of positive integers that are neither the square nor cube of an integer. Find the 2016th term of this sequence.

$$\mathrm{Let}\:\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{10},\mathrm{11},...\:\mathrm{be}\:\mathrm{increasing} \\ $$$$\mathrm{sequence}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{neither}\:\mathrm{the}\:\mathrm{square}\:\mathrm{nor}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{integer}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{2016th}\:\mathrm{term}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{sequence}. \\ $$

Question Number 111466    Answers: 1   Comments: 2

Σ_(n=1) ^∞ (n^n /(n!))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{n}} }{{n}!} \\ $$

Question Number 111450    Answers: 0   Comments: 1

Question Number 111428    Answers: 0   Comments: 1

Σ_(n=1) ^∞ (n^3 /(n!))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!} \\ $$

Question Number 111132    Answers: 1   Comments: 0

prove by mathematical induction ⇒ 7^n −(3n+4)×4^(n−1) divided by 9

$$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\Rightarrow\:\mathrm{7}^{\mathrm{n}} −\left(\mathrm{3n}+\mathrm{4}\right)×\mathrm{4}^{\mathrm{n}−\mathrm{1}} \:\mathrm{divided}\:\mathrm{by}\:\mathrm{9} \\ $$

Question Number 111152    Answers: 0   Comments: 0

Question Number 111080    Answers: 1   Comments: 0

(√(bemath)) (1)Σ_(k=50) ^(100) (1/(k(151−k))) ? (2) without L′Hopital and series find the value of lim_(x→0) ((xcos x−sin x)/(x^2 sin x))

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\left(\mathrm{1}\right)\underset{\mathrm{k}=\mathrm{50}} {\overset{\mathrm{100}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{151}−\mathrm{k}\right)}\:? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{without}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{and}\:\mathrm{series}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{xcos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:\mathrm{x}} \\ $$

Question Number 110860    Answers: 1   Comments: 0

Question Number 110742    Answers: 0   Comments: 0

please give me a result of E(tanx)

$${please}\:{give}\:{me}\:{a}\:{result}\:{of}\:{E}\left({tanx}\right) \\ $$

Question Number 110385    Answers: 0   Comments: 3

Question Number 110920    Answers: 1   Comments: 1

Question Number 110919    Answers: 1   Comments: 0

lim_(n→∞) (Σ_(r=1) ^n (1/(3^r r!))(Π_(k=1) ^r (2k−1)))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{r}} {r}!}\left(\underset{{k}=\mathrm{1}} {\overset{{r}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)\right)\right) \\ $$

Question Number 109922    Answers: 1   Comments: 0

Question Number 109787    Answers: 0   Comments: 0

How to prove that ▽×(▽×E)= ▽▽.E−▽^2 E, where E is the eletric field?

$${How}\:{to}\:{prove}\:{that}\:\bigtriangledown×\left(\bigtriangledown×{E}\right)=\:\bigtriangledown\bigtriangledown.{E}−\bigtriangledown^{\mathrm{2}} {E},\:{where}\:{E}\:{is}\:{the}\:{eletric}\:{field}? \\ $$

Question Number 109776    Answers: 0   Comments: 0

Question Number 109655    Answers: 0   Comments: 0

Question Number 109619    Answers: 0   Comments: 2

Σ_(n=1) ^∞ ((n!)/n^n )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$

Question Number 109208    Answers: 1   Comments: 0

∫_0 ^∞ ((x^n −1)/(x−1)).(x/e^x )dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}.\frac{{x}}{{e}^{{x}} }{dx} \\ $$

  Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com