Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 58

Question Number 102664    Answers: 2   Comments: 0

2x=5 x=? −−− for test app only

$$\mathrm{2}{x}=\mathrm{5} \\ $$$${x}=? \\ $$$$−−− \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{test}}\:\boldsymbol{{app}}\:\boldsymbol{{only}} \\ $$

Question Number 102651    Answers: 0   Comments: 1

12+14+24+58+164....upto nth terms

$$\mathrm{12}+\mathrm{14}+\mathrm{24}+\mathrm{58}+\mathrm{164}....\mathrm{upto}\:\mathrm{nth}\:\mathrm{terms} \\ $$

Question Number 102635    Answers: 2   Comments: 0

Question Number 102627    Answers: 3   Comments: 0

show that: cosθ + cos2θ + ....cos nθ= ((cos (1/2)(n +1)θ sin(1/2)nθ)/(sin (1/2)nθ)) Show that: sin θ + sin 2θ + ....+ sin nθ = ((sin (1/2)(n + 1)θ sin(1/2)nθ)/(sin (1/2)nθ)) where θ ∈ R and θ ≠2πk , k ∈Z

$$\mathrm{show}\:\mathrm{that}:\:\mathrm{cos}\theta\:+\:\mathrm{cos2}\theta\:+\:....\mathrm{cos}\:{n}\theta=\:\frac{\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\left({n}\:+\mathrm{1}\right)\theta\:\mathrm{sin}\frac{\mathrm{1}}{\mathrm{2}}{n}\theta}{\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{n}\theta} \\ $$$$\mathrm{Show}\:\mathrm{that}:\:\mathrm{sin}\:\theta\:+\:\mathrm{sin}\:\mathrm{2}\theta\:+\:....+\:\mathrm{sin}\:{n}\theta\:=\:\frac{\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\left({n}\:+\:\mathrm{1}\right)\theta\:\mathrm{sin}\frac{\mathrm{1}}{\mathrm{2}}{n}\theta}{\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{n}\theta} \\ $$$$\mathrm{where}\:\theta\:\in\:\mathbb{R}\:\mathrm{and}\:\theta\:\neq\mathrm{2}\pi{k}\:,\:{k}\:\in\mathbb{Z} \\ $$$$ \\ $$

Question Number 102598    Answers: 2   Comments: 0

Question Number 102545    Answers: 1   Comments: 0

Question Number 102544    Answers: 2   Comments: 0

Question Number 102539    Answers: 3   Comments: 2

2+3.3+4.3^2 +5.3^2 +.....up to n terms

$$\mathrm{2}+\mathrm{3}.\mathrm{3}+\mathrm{4}.\mathrm{3}^{\mathrm{2}} +\mathrm{5}.\mathrm{3}^{\mathrm{2}} +.....{up}\:{to}\:{n}\:{terms} \\ $$

Question Number 102530    Answers: 0   Comments: 1

Question Number 102484    Answers: 1   Comments: 0

Question Number 102407    Answers: 0   Comments: 0

Sir MJS & Sir John Santu You both have decided to leave this forum for different reasons. Being agree with your reasons and accepting your right of decision I dare to suggest not to disconnect fully from the forum.Please stay connected although for very short time on daily/weekly basis.This is also necessary because we have no means to contact you. After all this is only a request. You may or may not accept it.

$$\mathrm{Sir}\:\mathrm{MJS}\:\&\:\mathrm{Sir}\:\mathrm{John}\:\mathrm{Santu} \\ $$$${You}\:{both}\:{have}\:{decided}\:{to}\:{leave} \\ $$$${this}\:{forum}\:{for}\:{different}\:{reasons}. \\ $$$${Being}\:{agree}\:{with}\:{your}\:{reasons} \\ $$$${and}\:{accepting}\:{your}\:{right}\:{of}\: \\ $$$${decision}\:{I}\:{dare}\:{to}\:{suggest}\:{not} \\ $$$${to}\:{disconnect}\:{fully}\:{from}\:{the} \\ $$$${forum}.{Please}\:{stay}\:{connected} \\ $$$${although}\:{for}\:{very}\:{short}\:{time}\:{on} \\ $$$${daily}/{weekly}\:{basis}.\mathcal{T}{his}\:{is}\:{also} \\ $$$${necessary}\:{because}\:{we}\:{have}\:{no} \\ $$$${means}\:{to}\:{contact}\:{you}. \\ $$$$\:\:\:\:\mathcal{A}{fter}\:{all}\:{this}\:{is}\:{only}\:{a}\:{request}. \\ $$$${You}\:{may}\:{or}\:{may}\:{not}\:{accept}\:{it}. \\ $$$$ \\ $$

Question Number 102362    Answers: 0   Comments: 0

please how calculate the development limity of f(x,y)=x^y ,take a( 3,2) at order one and two

$${please}\:{how}\:{calculate}\:{the}\:{development}\:\:{limity}\:{of}\:{f}\left({x},{y}\right)={x}^{{y}} \\ $$$$\:,{take}\:{a}\left(\:\mathrm{3},\mathrm{2}\right)\:{at}\:{order}\:{one}\:{and}\:{two} \\ $$

Question Number 102336    Answers: 1   Comments: 1

if f(x)≤2l +1 and ∫_1 ^3 f(x)dx≤l^2 find the value of l

$${if}\:\:{f}\left({x}\right)\leqslant\mathrm{2}{l}\:+\mathrm{1}\: \\ $$$${and}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} {f}\left({x}\right){dx}\leqslant{l}^{\mathrm{2}} \\ $$$${find}\:{the}\:{value}\:{of}\:{l} \\ $$

Question Number 102142    Answers: 0   Comments: 0

A four-sidex dice with numbered 1, 2, 3, and 4 is thrown and the number at the base is read. The dice is biased such that the probabilies P_1 , P_2 , P_3 , and P_4 to obtain 1, 2, 3, and 4 respectively are in an arithmetic progression. 1\ Given P_4 =0.4, calculate P_1 , P_2 , and P_3 . 2\ The dice is thrown n-times (n≥1). The throws are assumed to be independent, 2 by 2, and identical. Given U_n -the probability of obtaining for the first time the fourth-n^(th) throw; a\Express U_n in terms of n= b\Given S_n =Σ_(i=1) ^n U_i i. Express Sn in terms of n, and find its limit. ii. Determine the smallest natural number such that S_n >0.999

$$\mathrm{A}\:\mathrm{four}-\mathrm{sidex}\:\mathrm{dice}\:\mathrm{with}\:\mathrm{numbered}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{and}\:\mathrm{4}\:\mathrm{is}\:\mathrm{thrown} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{number}\:\mathrm{at}\:\mathrm{the}\:\mathrm{base}\:\mathrm{is}\:\mathrm{read}. \\ $$$$\mathrm{The}\:\mathrm{dice}\:\mathrm{is}\:\mathrm{biased}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{probabilies}\:\mathrm{P}_{\mathrm{1}} ,\:\mathrm{P}_{\mathrm{2}} ,\:\mathrm{P}_{\mathrm{3}} , \\ $$$$\mathrm{and}\:\mathrm{P}_{\mathrm{4}} \:\mathrm{to}\:\mathrm{obtain}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{and}\:\mathrm{4}\:\mathrm{respectively}\:\mathrm{are}\:\mathrm{in}\:\mathrm{an} \\ $$$$\mathrm{arithmetic}\:\mathrm{progression}. \\ $$$$\mathrm{1}\backslash\:\mathrm{Given}\:\mathrm{P}_{\mathrm{4}} =\mathrm{0}.\mathrm{4},\:\mathrm{calculate}\:\mathrm{P}_{\mathrm{1}} ,\:\mathrm{P}_{\mathrm{2}} ,\:\mathrm{and}\:\mathrm{P}_{\mathrm{3}} . \\ $$$$\mathrm{2}\backslash\:\mathrm{The}\:\mathrm{dice}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{n}-\mathrm{times}\:\left(\mathrm{n}\geqslant\mathrm{1}\right).\:\mathrm{The}\:\mathrm{throws}\:\mathrm{are}\:\mathrm{assumed} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{independent},\:\mathrm{2}\:\mathrm{by}\:\mathrm{2},\:\mathrm{and}\:\mathrm{identical}.\:\mathrm{Given}\:\mathrm{U}_{\mathrm{n}} -\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{of}\:\mathrm{obtaining}\:\mathrm{for}\:\mathrm{the}\:\mathrm{first}\:\mathrm{time}\:\mathrm{the}\:\mathrm{fourth}-\mathrm{n}^{\mathrm{th}} \mathrm{throw}; \\ $$$$\mathrm{a}\backslash\mathrm{Express}\:\mathrm{U}_{\mathrm{n}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{n}= \\ $$$$\mathrm{b}\backslash\mathrm{Given}\:\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{U}_{\mathrm{i}} \\ $$$$\:\:\mathrm{i}.\:\mathrm{Express}\:\mathrm{Sn}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{n},\:\mathrm{and}\:\mathrm{find}\:\mathrm{its}\:\mathrm{limit}. \\ $$$$\:\mathrm{ii}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\mathrm{S}_{\mathrm{n}} >\mathrm{0}.\mathrm{999} \\ $$

Question Number 102089    Answers: 2   Comments: 0

The Gamma function Γ(α) is defined as follows; Γ(α)=∫_0 ^∞ y^(α−1) e^(−y) dy , α>0 a\ Show that Γ(α+1)=αΓ(α). b\Conclude that Γ(n)=(n−1)! , n=1, 2, 3, ... c\Determine Γ(55).

$$ \\ $$$$\mathrm{The}\:\mathrm{Gamma}\:\mathrm{function}\:\Gamma\left(\alpha\right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{follows}; \\ $$$$\Gamma\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{y}^{\alpha−\mathrm{1}} \mathrm{e}^{−\mathrm{y}} \mathrm{dy}\:,\:\alpha>\mathrm{0} \\ $$$$\mathrm{a}\backslash\:\mathrm{Show}\:\mathrm{that}\:\Gamma\left(\alpha+\mathrm{1}\right)=\alpha\Gamma\left(\alpha\right). \\ $$$$\mathrm{b}\backslash\mathrm{Conclude}\:\mathrm{that}\:\Gamma\left(\mathrm{n}\right)=\left(\mathrm{n}−\mathrm{1}\right)!\:,\:\mathrm{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:... \\ $$$$\mathrm{c}\backslash\mathrm{Determine}\:\Gamma\left(\mathrm{55}\right). \\ $$

Question Number 102085    Answers: 0   Comments: 0

Question Number 102080    Answers: 0   Comments: 0

A random variable, X, has a Gamma distribution with parameters α and β, (α, β>0). The p.d.f has the form f(x)=(1/(Γ(α)β^α ))x^(n−1) e^(−x/β) , for x>0 , Γ(α)=(1/β^α )∫_0 ^∞ x^(α−1) e^(−x) dx a\ Show that the Gamma density is a proper p.d.f. b\Find the mean, variance, and moment-generating function of the Gamma distribution. c\Find the fourth moment using the definition of moments.

$$\mathrm{A}\:\mathrm{random}\:\mathrm{variable},\:\mathrm{X},\:\mathrm{has}\:\mathrm{a}\:\mathrm{Gamma}\:\mathrm{distribution}\:\mathrm{with} \\ $$$$\mathrm{parameters}\:\alpha\:\mathrm{and}\:\beta,\:\left(\alpha,\:\beta>\mathrm{0}\right).\:\mathrm{The}\:\mathrm{p}.\mathrm{d}.\mathrm{f}\:\mathrm{has}\:\mathrm{the}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\Gamma\left(\alpha\right)\beta^{\alpha} }\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{−\mathrm{x}/\beta} ,\:\mathrm{for}\:\mathrm{x}>\mathrm{0}\:\:,\:\:\Gamma\left(\alpha\right)=\frac{\mathrm{1}}{\beta^{\alpha} }\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\alpha−\mathrm{1}} \mathrm{e}^{−\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{a}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{Gamma}\:\mathrm{density}\:\mathrm{is}\:\mathrm{a}\:\mathrm{proper}\:\mathrm{p}.\mathrm{d}.\mathrm{f}. \\ $$$$\mathrm{b}\backslash\mathrm{Find}\:\mathrm{the}\:\mathrm{mean},\:\mathrm{variance},\:\mathrm{and}\:\mathrm{moment}-\mathrm{generating}\:\mathrm{function}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Gamma}\:\mathrm{distribution}. \\ $$$$\mathrm{c}\backslash\mathrm{Find}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{moment}\:\mathrm{using}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{moments}. \\ $$

Question Number 102076    Answers: 0   Comments: 4

A car is currently valued at $70350.00. If it loses 12% of its value at the beginning of each year, a) find its value after three and half years. b) find the depreciation after three years

$$\mathrm{A}\:\mathrm{car}\:\mathrm{is}\:\mathrm{currently}\:\mathrm{valued}\:\mathrm{at}\:\$\mathrm{70350}.\mathrm{00}. \\ $$$$\mathrm{If}\:\mathrm{it}\:\mathrm{loses}\:\mathrm{12\%}\:\mathrm{of}\:\mathrm{its}\:\mathrm{value}\:\mathrm{at}\:\mathrm{the}\:\mathrm{beginning} \\ $$$$\mathrm{of}\:\mathrm{each}\:\mathrm{year}, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{find}\:\mathrm{its}\:\mathrm{value}\:\mathrm{after}\:\mathrm{three}\:\mathrm{and}\:\mathrm{half}\:\mathrm{years}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{depreciation}\:\mathrm{after}\:\mathrm{three}\:\mathrm{years} \\ $$

Question Number 101794    Answers: 1   Comments: 0

Question Number 101768    Answers: 0   Comments: 1

Question Number 101767    Answers: 0   Comments: 2

Question Number 101762    Answers: 0   Comments: 2

Question Number 101616    Answers: 2   Comments: 1

Question Number 101555    Answers: 1   Comments: 0

Question Number 101476    Answers: 1   Comments: 0

Question Number 101474    Answers: 1   Comments: 0

  Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com