Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 57
Question Number 110919 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{r}} {r}!}\left(\underset{{k}=\mathrm{1}} {\overset{{r}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)\right)\right) \\ $$
Question Number 109922 Answers: 1 Comments: 0
Question Number 109787 Answers: 0 Comments: 0
$${How}\:{to}\:{prove}\:{that}\:\bigtriangledown×\left(\bigtriangledown×{E}\right)=\:\bigtriangledown\bigtriangledown.{E}−\bigtriangledown^{\mathrm{2}} {E},\:{where}\:{E}\:{is}\:{the}\:{eletric}\:{field}? \\ $$
Question Number 109776 Answers: 0 Comments: 0
Question Number 109655 Answers: 0 Comments: 0
Question Number 109619 Answers: 0 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$
Question Number 109208 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}.\frac{{x}}{{e}^{{x}} }{dx} \\ $$
Question Number 109123 Answers: 0 Comments: 0
$${prove}\:{that}\:: \\ $$$$\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} {sin}\left({x}\right)−{cos}\left({x}\right){dx}\:\geqslant\int_{\pi} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} {sin}\left({x}\right)+{cos}\left({x}\right){dx} \\ $$
Question Number 109119 Answers: 2 Comments: 0
$${if}\:{f}\left({x}^{\mathrm{2}} \right)={y}\:\:,{f}'\left({x}\right)=\sqrt{\mathrm{5}{x}−\mathrm{1}\:}\:{then}\: \\ $$$$\frac{{dy}}{{dx}}=..... \\ $$
Question Number 109117 Answers: 1 Comments: 0
Question Number 109082 Answers: 1 Comments: 0
$${prove}\:{that}\:: \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} \mathrm{2}{cos}\left({x}\right)+{sin}\left({x}\right){dx}\leqslant\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} {cos}\left({x}\right)−{sin}\left({x}\right){dx} \\ $$
Question Number 108951 Answers: 0 Comments: 0
Question Number 108907 Answers: 1 Comments: 1
$$\mathcal{T}{hree}\:\:\mathcal{C}{atagories}\:{of}\:\mathcal{P}{osts}: \\ $$$${Question}\:,\:\mathcal{A}{nswer}\:\&\:\mathcal{C}{omment} \\ $$$$ \\ $$$$\mathbb{U}\mathrm{se}\:{Question}\:\mathrm{for}\:\boldsymbol{\mathrm{only}}\:\mathrm{questions}. \\ $$$$\left(\mathcal{D}{on}'{t}\:{use}\:{it}\:{for}\:{solutions}\:\&\right. \\ $$$$\left.{comments}.\right) \\ $$
Question Number 108571 Answers: 2 Comments: 0
Question Number 108290 Answers: 0 Comments: 3
$$\mathrm{Why}\:\mathrm{do}\:\mathrm{all}\:\mathrm{active}\:\mathrm{content}\:\mathrm{of}\:\mathrm{forum}\:\mathrm{of} \\ $$$$\mathrm{dates}\:\mathrm{12},\mathrm{13},\mathrm{14was}\:\mathrm{disappear}\:\mathrm{on}\:\mathrm{my} \\ $$$$\mathrm{phone}? \\ $$
Question Number 108259 Answers: 0 Comments: 0
Question Number 108239 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{7}}{\mathrm{2}}\right)!=? \\ $$$$ \\ $$
Question Number 107929 Answers: 0 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} +\mathrm{5}^{\mathrm{5}} }+.... \\ $$
Question Number 107783 Answers: 0 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} } \\ $$
Question Number 107741 Answers: 0 Comments: 2
Question Number 107704 Answers: 0 Comments: 0
Question Number 107628 Answers: 0 Comments: 0
Question Number 107533 Answers: 2 Comments: 0
$$\mathrm{The}\:\mathrm{position}\:\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}\:{x}\left({t}\right)\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in} \\ $$$$\mathrm{motion}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}\:\:{x}\left({t}\right)\:=\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right){t}^{\mathrm{2}} \:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{particle}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}. \\ $$
Question Number 107512 Answers: 0 Comments: 3
$$\mathrm{I}\:\mathrm{seen}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{insert}\:\mathrm{separator}\:\left(\mathrm{right}\:\mathrm{and}\:\mathrm{left}\right)\mathrm{don}'\mathrm{t}\: \\ $$$$\mathrm{work},\mathrm{ask}\:\mathrm{Titurkara}\:\mathrm{fix}\:\mathrm{this}\:\mathrm{problem}! \\ $$
Question Number 107420 Answers: 1 Comments: 1
Question Number 107403 Answers: 0 Comments: 0
Pg 52 Pg 53 Pg 54 Pg 55 Pg 56 Pg 57 Pg 58 Pg 59 Pg 60 Pg 61
Terms of Service
Privacy Policy
Contact: info@tinkutara.com