solve for real values of x the equation
4(3^(2x+1) )+17(3^x )=7.
if m and n are positive real numbers other
than 1, show that the log_n m+log_(1/m) n=0
1+1+1+1+1+1+1+....=S_n
S_n =1+1+1+1+1+1+1+....
2S_n = 2 + 2 + 2+.......
.......... subtracting
−S_n =1−1+1−1+1−1+1−1+1−1+....
−S_n =(1/2)
S_n =−(1/2)
I have found this while experiment . I know the sum diverges
but is it pretty cool?
Kindly rectify me if there is any fault on this non rigorous
process
I have found some Ramanujan proof
S_n =1+2+3+4+5+6+7+...
4S_n = 4+ 8 + 12+...
−3S_n =1−2+3−4+5−6+7−8+......
−3S_n =(1/4)
S_n =−(1/(12))
Ramanujan had done this on his notebook
1−1+1−1+1−1+1−1+.....=(1/2) {But it diverges
1+1+1+1+1+1+1+......=−(1/2) {But it diverges
1+2+4+8+16+.....=−1 {But it diverges
1+2+3+4+5+6+7=−(1/(12)) {But it diverges
1−2+4−8+.....=(1/3) {But it diverges
1−2+3−4+5−6+.....=(1/4) {Is it a divergent?????