Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 55

Question Number 121326    Answers: 1   Comments: 3

((Σ_(n=1) ^∞ (1/(n^2 +1)))/(Σ_(n=2) ^∞ (1/(n^2 −1))))

$$\frac{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}}{\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{1}}} \\ $$

Question Number 121229    Answers: 1   Comments: 0

Question Number 121217    Answers: 0   Comments: 0

Question Number 121215    Answers: 0   Comments: 0

Question Number 121085    Answers: 3   Comments: 1

Question Number 121044    Answers: 0   Comments: 0

(3/4)+(1/2)=..... { (),() :}

$$\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}=.....\begin{cases}{}\\{}\end{cases} \\ $$

Question Number 120727    Answers: 1   Comments: 0

Question Number 120631    Answers: 1   Comments: 0

Question Number 120598    Answers: 0   Comments: 0

Let A be a subset of a Real number with dimension 2 and let x be a real number member of dimension 2. Then x is called the limit point of A if ...?

$$ \\ $$$$\mathrm{Let}\:\mathrm{A}\:\mathrm{be}\:\mathrm{a}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Real}\:\mathrm{number} \\ $$$$\mathrm{wit}{h}\:\mathrm{dimension}\:\mathrm{2}\:\mathrm{and}\:\mathrm{let}\:\mathrm{x}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real} \\ $$$$\mathrm{num}{b}\mathrm{er}\:\mathrm{member}\:\mathrm{of}\:\mathrm{dimension}\:\mathrm{2}.\:\mathrm{Then}\: \\ $$$$\mathrm{x}\:\mathrm{is}\:\mathrm{called}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{point}\:\mathrm{of}\:\mathrm{A}\:\mathrm{if}\:...? \\ $$

Question Number 120597    Answers: 0   Comments: 0

Let A ≠ −φ , A are subsets of R and A are open sets. Then each p member A applies ...?

$$ \\ $$$$\mathrm{Let}\:\mathrm{A}\:\:\neq\:−\phi\:,\:\mathrm{A}\:\mathrm{are}\:\mathrm{subsets}\:\mathrm{of}\:\mathrm{R}\:\mathrm{and}\:\mathrm{A}\:\mathrm{are} \\ $$$$\mathrm{ope}{n}\:\mathrm{sets}.\:\mathrm{Then}\:\mathrm{each}\:\mathrm{p}\:\mathrm{member}\:\mathrm{A} \\ $$$$\mathrm{applie}{s}\:...? \\ $$

Question Number 120541    Answers: 1   Comments: 0

Question Number 120331    Answers: 0   Comments: 8

Question Number 120183    Answers: 0   Comments: 0

Question Number 120160    Answers: 1   Comments: 1

Question Number 120118    Answers: 0   Comments: 2

Question Number 119866    Answers: 1   Comments: 4

Question Number 119856    Answers: 0   Comments: 4

i have forgotten my password. how may i retrieve it? please help me or forward me to one of the developers please

$$\mathrm{i}\:\mathrm{have}\:\mathrm{forgotten}\:\mathrm{my}\:\mathrm{password}. \\ $$$$\mathrm{how}\:\mathrm{may}\:\mathrm{i}\:\mathrm{retrieve}\:\mathrm{it}? \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{or}\:\mathrm{forward}\:\mathrm{me}\:\mathrm{to} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{developers}\:\mathrm{please} \\ $$

Question Number 119564    Answers: 0   Comments: 0

((3/x) − ((15)/(2y)) ) ÷ (6/(xy)) = ((6y − 15x)/(2xy)) × ((xy)/6).

$$\left(\frac{\mathrm{3}}{{x}}\:−\:\frac{\mathrm{15}}{\mathrm{2}{y}}\:\right)\:\boldsymbol{\div}\:\frac{\mathrm{6}}{{xy}}\:=\:\frac{\mathrm{6}{y}\:−\:\mathrm{15}{x}}{\mathrm{2}{xy}}\:×\:\frac{{xy}}{\mathrm{6}}. \\ $$

Question Number 119529    Answers: 3   Comments: 7

Question Number 119463    Answers: 1   Comments: 2

one cube of side length 3cm is painted by three colour say (red blue and black) opposte face same colour Now cube is cut into 27 small cube i)How many cube has three face coloured ii)How many cube two face coloured iii)How many cube has no colour in its face

$${one}\:{cube}\:{of}\:{side}\:{length}\:\mathrm{3}{cm}\:{is}\:{painted}\:{by}\:{three}\:{colour} \\ $$$${say}\:\left({red}\:{blue}\:{and}\:{black}\right)\:{opposte}\:{face}\:{same}\:{colour} \\ $$$${Now}\:{cube}\:{is}\:{cut}\:{into}\:\mathrm{27}\:{small}\:{cube} \\ $$$$\left.{i}\right){How}\:{many}\:{cube}\:{has}\:{three}\:{face}\:{coloured} \\ $$$$\left.{ii}\right){How}\:{many}\:{cube}\:{two}\:{face}\:{coloured} \\ $$$$\left.{iii}\right){How}\:{many}\:{cube}\:\:{has}\:{no}\:{colour}\:{in}\:{its}\:{face} \\ $$

Question Number 119376    Answers: 3   Comments: 2

Solve for x in the equation below ax^2 +bx + c = 0.

$${Solve}\:{for}\:\boldsymbol{{x}}\:{in}\:{the}\:{equation}\:{below} \\ $$$${ax}^{\mathrm{2}} \:+{bx}\:+\:{c}\:=\:\mathrm{0}. \\ $$

Question Number 119316    Answers: 0   Comments: 0

((Σ_(n=1) ^∞ (1/n^n ))/(Σ_(n=1) ^∞ (−1)^(n+1) (1/n^n )))

$$\frac{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{n}} }}{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}^{{n}} }} \\ $$

Question Number 119112    Answers: 0   Comments: 2

Seems my recent post was removed by Tinkutara.

$$\boldsymbol{\mathrm{Seems}}\:\boldsymbol{\mathrm{my}}\:\boldsymbol{\mathrm{recent}}\:\boldsymbol{\mathrm{post}}\:\boldsymbol{\mathrm{was}}\:\boldsymbol{\mathrm{removed}}\:\boldsymbol{\mathrm{by}} \\ $$$$\boldsymbol{\mathrm{Tinkutara}}.\: \\ $$

Question Number 118952    Answers: 2   Comments: 0

Salut Pouvez vous m′aider avec ce devoir? Examiner si les series suivantes sont absolument convergentes ou semi−convergentes Σ_(k=0) ^n (((-1)^(k-1) )/((k+1)^2 )) Σ_(k=0) ^n (((-1)^(k-1) )/k) Etudier la convergence des series suivantes Σ_(k=1) ^n (((2k)!)/2^k ) Σ_(k=1) ^n ((1/2))^k

$$\mathrm{Salut} \\ $$$$\mathrm{Pouvez}\:\mathrm{vous}\:\mathrm{m}'\mathrm{aider}\:\mathrm{avec}\:\mathrm{ce}\:\mathrm{devoir}? \\ $$$$ \\ $$$$\mathrm{Examiner}\:\mathrm{si}\:\mathrm{les}\:\mathrm{series}\:\mathrm{suivantes}\:\mathrm{sont}\: \\ $$$$\mathrm{absolument}\:\mathrm{convergentes}\:\mathrm{ou}\: \\ $$$$\mathrm{semi}−\mathrm{convergentes} \\ $$$$ \\ $$$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\left(-\mathrm{1}\right)^{\mathrm{k}-\mathrm{1}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\left(-\mathrm{1}\right)^{\mathrm{k}-\mathrm{1}} }{\mathrm{k}} \\ $$$$ \\ $$$$\mathrm{Etudier}\:\mathrm{la}\:\mathrm{convergence}\:\mathrm{des}\:\mathrm{series}\:\mathrm{suivantes} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\left(\mathrm{2k}\right)!}{\mathrm{2}^{\mathrm{k}} } \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{k}} \\ $$$$ \\ $$

Question Number 118685    Answers: 0   Comments: 1

Converting decimal numbers to base 10

$$\boldsymbol{{Converting}}\:\boldsymbol{{decimal}}\:\boldsymbol{{numbers}}\:\boldsymbol{{to}}\:\boldsymbol{{base}}\:\mathrm{10} \\ $$

Question Number 118594    Answers: 0   Comments: 0

  Pg 50      Pg 51      Pg 52      Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com