Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 54

Question Number 123370    Answers: 0   Comments: 2

((√1)/1)+((√2)/5)+((√3)/(10))+((√4)/(17))+((√5)/(37))+...

$$\frac{\sqrt{\mathrm{1}}}{\mathrm{1}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{5}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{10}}+\frac{\sqrt{\mathrm{4}}}{\mathrm{17}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{37}}+... \\ $$

Question Number 123336    Answers: 1   Comments: 0

A mercury based barometer reads 760mmhg at the base of a mountain and 704.0mmhg at the top. Find the height of the mountain if the density of mercury and air are respectively 13600kgm^(−3) and 1.25kgm^(−3) (g=10ms^(−2) )

$$ \\ $$$$\mathrm{A}\:\mathrm{mercury}\:\mathrm{based}\:\mathrm{barometer}\:\mathrm{reads} \\ $$$$\mathrm{760mmhg}\:\mathrm{at}\:\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{a}\:\mathrm{mountain}\:\mathrm{and} \\ $$$$\mathrm{704}.\mathrm{0mmhg}\:\mathrm{at}\:\mathrm{the}\:\mathrm{top}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{height}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{mountain}\:\mathrm{if}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\: \\ $$$$\mathrm{mercury}\:\mathrm{and}\:\mathrm{air}\:\mathrm{are}\:\mathrm{respectively} \\ $$$$\mathrm{13600kgm}^{−\mathrm{3}} \:\:\mathrm{and}\:\mathrm{1}.\mathrm{25kgm}^{−\mathrm{3}} \:\left(\mathrm{g}=\mathrm{10ms}^{−\mathrm{2}} \right) \\ $$

Question Number 123326    Answers: 1   Comments: 1

Σ_(n=1) ^∞ (1/(n^3 +n^2 +n+1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}} \\ $$

Question Number 123248    Answers: 2   Comments: 3

Find the value of sin((π/9)) in exact form

$${Find}\:{the}\:{value}\:{of}\:{sin}\left(\frac{\pi}{\mathrm{9}}\right)\:\:{in}\:{exact}\:{form} \\ $$

Question Number 123179    Answers: 0   Comments: 3

(1^7 /(e^(2π) −1))+(2^7 /(e^(4π) −1))+(3^7 /(e^(6π) −1))+....

$$\frac{\mathrm{1}^{\mathrm{7}} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}+\frac{\mathrm{2}^{\mathrm{7}} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}+\frac{\mathrm{3}^{\mathrm{7}} }{{e}^{\mathrm{6}\pi} −\mathrm{1}}+.... \\ $$

Question Number 123167    Answers: 1   Comments: 1

Σ_(n=1) ^∞ ((√n)/(n^2 +n+1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\sqrt{{n}}}{{n}^{\mathrm{2}} +{n}+\mathrm{1}} \\ $$

Question Number 123135    Answers: 0   Comments: 0

∫_0 ^∞ ((ta−bt^3 )/((1+ct^2 )(e^(2πt) −1)))dt

$$\int_{\mathrm{0}} ^{\infty} \frac{{ta}−{bt}^{\mathrm{3}} }{\left(\mathrm{1}+{ct}^{\mathrm{2}} \right)\left({e}^{\mathrm{2}\pi{t}} −\mathrm{1}\right)}{dt} \\ $$

Question Number 122996    Answers: 0   Comments: 1

Σ_(n=1) ^∞ (n/(n^4 +1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{4}} +\mathrm{1}} \\ $$

Question Number 122960    Answers: 0   Comments: 2

(1/(1+(1/(2+(3^2 /(2+(5^2 /(2+(7^2 /(....))))))))))=(π/4)

$$\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{2}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{2}+\frac{\mathrm{7}^{\mathrm{2}} }{....}}}}}=\frac{\pi}{\mathrm{4}}\:\: \\ $$$$ \\ $$

Question Number 122917    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((tan^(−1) n)/(n^2 +1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{tan}^{−\mathrm{1}} {n}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$

Question Number 122862    Answers: 1   Comments: 0

∫_0 ^∞ (x^7 /((1+x)^(10) ))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{7}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{10}} }{dx} \\ $$

Question Number 122740    Answers: 0   Comments: 3

Prove that tanx=(2/(π−2x))−(2/(π+2x))+(2/(3x−2π))−(2/(3x+2π))+(2/(5x−2π))−(2/(5x+2π))+....

$${Prove}\:{that} \\ $$$${tanx}=\frac{\mathrm{2}}{\pi−\mathrm{2}{x}}−\frac{\mathrm{2}}{\pi+\mathrm{2}{x}}+\frac{\mathrm{2}}{\mathrm{3}{x}−\mathrm{2}\pi}−\frac{\mathrm{2}}{\mathrm{3}{x}+\mathrm{2}\pi}+\frac{\mathrm{2}}{\mathrm{5}{x}−\mathrm{2}\pi}−\frac{\mathrm{2}}{\mathrm{5}{x}+\mathrm{2}\pi}+.... \\ $$

Question Number 122668    Answers: 0   Comments: 0

Esta has a directory. it contains n (n<1000) pages where 999991 subscribers are registered and each page contains the same numbers of subscribers. How many pages does this directory has?

$${Esta}\:{has}\:{a} \\ $$$$\:{directory}.\:{it}\:{contains}\: \\ $$$${n}\:\left({n}<\mathrm{1000}\right)\:{pages}\:{where}\: \\ $$$$\mathrm{999991}\:{subscribers}\:{are}\:{registered} \\ $$$${and}\:{each}\:{page}\:{contains}\:{the}\: \\ $$$${same}\:{numbers}\:{of}\:{subscribers}. \\ $$$${How}\:{many}\:{pages}\:{does}\:{this} \\ $$$${directory}\:{has}? \\ $$

Question Number 122641    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (1/(n^4 +1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} +\mathrm{1}} \\ $$

Question Number 122638    Answers: 0   Comments: 1

Question Number 122518    Answers: 1   Comments: 1

1−(1/5)+(1/7)−(1/(11))+(1/(13))−(1/(17))+...

$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{17}}+... \\ $$

Question Number 122514    Answers: 2   Comments: 1

Question Number 122336    Answers: 0   Comments: 0

please prove that sup(−A)=−inf(A)

$${please}\:{prove}\:{that}\:{sup}\left(−{A}\right)=−{inf}\left({A}\right) \\ $$

Question Number 122335    Answers: 0   Comments: 0

Question Number 122322    Answers: 4   Comments: 0

∣x+1∣<∣x^2 +2x+2∣ solve for x

$$\mid{x}+\mathrm{1}\mid<\mid{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\mid \\ $$$${solve}\:{for}\:{x} \\ $$

Question Number 122318    Answers: 0   Comments: 0

Question Number 122303    Answers: 1   Comments: 3

((log1)/( (√1)))−((log3)/( (√3)))+((log5)/( (√5)))−((log7)/( (√7)))+..C=((π/4)−(γ/2)−(1/2)log(2π))((1/( (√1)))−(1/( (√3)))+..C) γ =Eulerian constant

$$\frac{{log}\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{{log}\mathrm{3}}{\:\sqrt{\mathrm{3}}}+\frac{{log}\mathrm{5}}{\:\sqrt{\mathrm{5}}}−\frac{{log}\mathrm{7}}{\:\sqrt{\mathrm{7}}}+..{C}=\left(\frac{\pi}{\mathrm{4}}−\frac{\gamma}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{2}\pi\right)\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+..{C}\right) \\ $$$$\gamma\:=\mathscr{E}{ulerian}\:{constant} \\ $$

Question Number 122302    Answers: 3   Comments: 0

∫_0 ^∞ (dx/((1+x^2 )(4+x^2 )(16+x^2 )(64+x^2 )))

$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{4}+{x}^{\mathrm{2}} \right)\left(\mathrm{16}+{x}^{\mathrm{2}} \right)\left(\mathrm{64}+{x}^{\mathrm{2}} \right)} \\ $$

Question Number 122317    Answers: 0   Comments: 0

1+9((1/4))^4 +17(((1.5)/(4.8)))^4 +25(((1.5.9)/(4.8.12)))^4 +...=(π/(2(√2)(Γ^2 ((3/4)))))

$$\mathrm{1}+\mathrm{9}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{4}} +\mathrm{17}\left(\frac{\mathrm{1}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}\right)^{\mathrm{4}} +\mathrm{25}\left(\frac{\mathrm{1}.\mathrm{5}.\mathrm{9}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}\right)^{\mathrm{4}} +...=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}\left(\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right)} \\ $$

Question Number 122176    Answers: 2   Comments: 2

∫_0 ^(π/2) ((tanx))^(1/7) dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt[{\mathrm{7}}]{{tanx}}\:{dx} \\ $$

Question Number 122377    Answers: 1   Comments: 4

  Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com