Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 53
Question Number 124642 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:{Evaluate}\::\: \\ $$$$\:\:\:\int\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}−\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\right)^{\mathrm{4}} }}{dx} \\ $$
Question Number 124595 Answers: 4 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\:\omega\:=\:{e}^{{i}\theta} ,\:\theta\neq\:{n}\pi,\:{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\left(\mathrm{1}\right)\:\frac{\omega^{\mathrm{2}} −\mathrm{1}}{\omega}\:=\:\mathrm{2}{i}\:\mathrm{sin}\:\theta \\ $$$$\:\left(\mathrm{2}\right)\:\left(\mathrm{1}\:+\:\omega\right)^{{n}} \:=\:\mathrm{2}^{{n}} \mathrm{cos}^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}\left({in}\theta\right)} \\ $$
Question Number 124528 Answers: 0 Comments: 0
Question Number 124487 Answers: 1 Comments: 1
Question Number 124474 Answers: 1 Comments: 1
$$\left(\frac{\mathrm{4}}{−\mathrm{6}+{i}\sqrt{\mathrm{5}}}\right)^{\mathrm{4}} =??? \\ $$$$ \\ $$$${polar}???? \\ $$
Question Number 124461 Answers: 2 Comments: 2
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{7}} } {sin}\left({x}^{\mathrm{7}} \right){dx} \\ $$
Question Number 124459 Answers: 1 Comments: 1
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)+... \\ $$
Question Number 124347 Answers: 1 Comments: 1
Question Number 124321 Answers: 2 Comments: 0
$${f}\left({x},{y},{z}\right)={z}^{\mathrm{2}} {yz}^{\mathrm{3}} \\ $$$${A}={xzi}−{y}^{\mathrm{2}} {j}+\mathrm{2}{x}^{\mathrm{2}} {yk} \\ $$$${div}\left({fA}\right)=? \\ $$$${curl}\left({fA}\right)=? \\ $$
Question Number 124320 Answers: 2 Comments: 0
$${z}+\frac{\mathrm{1}}{{z}}=\mathrm{1} \\ $$$${z}^{\mathrm{3}} =?? \\ $$
Question Number 124300 Answers: 0 Comments: 0
Question Number 124302 Answers: 1 Comments: 0
$${n}=\mathrm{2}^{{n}−\mathrm{1}} {sin}\left(\frac{\pi}{{n}}\right){sin}\left(\frac{\mathrm{2}\pi}{{n}}\right)....{sin}\left(\frac{{n}−\mathrm{1}}{{n}}\pi\right)\:\:{prove}\: \\ $$$$ \\ $$
Question Number 124271 Answers: 0 Comments: 0
Question Number 124178 Answers: 1 Comments: 6
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{{cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{4}} {x}}}{dx} \\ $$
Question Number 123947 Answers: 0 Comments: 0
$$\frac{\mathrm{9}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{9}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }.\frac{\mathrm{18}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{18}^{\mathrm{2}} −\mathrm{0}^{\mathrm{2}} }.\frac{\mathrm{27}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{27}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }.\frac{\mathrm{36}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{36}^{\mathrm{2}} −\mathrm{0}^{\mathrm{2}} }..... \\ $$
Question Number 123845 Answers: 1 Comments: 1
Question Number 123823 Answers: 1 Comments: 0
Question Number 123807 Answers: 0 Comments: 1
$$\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!\left(\mathrm{1}\right)!}{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)!}−\frac{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)!\left(\mathrm{2}\right)!}{\left(\frac{\mathrm{9}}{\mathrm{2}}\right)!}+\frac{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)!\mathrm{3}!}{\left(\frac{\mathrm{13}}{\mathrm{2}}\right)!}−\frac{\left(\frac{\mathrm{7}}{\mathrm{2}}\right)!\mathrm{4}!}{\left(\frac{\mathrm{17}}{\mathrm{2}}\right)!}+.... \\ $$
Question Number 123776 Answers: 0 Comments: 0
$${Another}\:{unanswered}\:{question} \\ $$$$\frac{{log}\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{{log}\mathrm{3}}{\:\sqrt{\mathrm{3}}}+\frac{{log}\mathrm{5}}{\:\sqrt{\mathrm{5}}}−\frac{{log}\mathrm{7}}{\:\sqrt{\mathrm{7}}}+..=\left(\frac{\pi}{\mathrm{4}}−\frac{\gamma}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{2}\pi\right)\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}−.\right) \\ $$
Question Number 123794 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:...{mathematical}\:\:{analysis}... \\ $$$$\:{suppose}\:\:\left({X}_{\mathrm{1}} ,\tau_{\mathrm{1}} \right)\:{and}\:\left({X}_{\mathrm{2}} ,\tau_{\mathrm{2}} \right) \\ $$$$\:{are}\:{two}\:{topological}\:{spaces}. \\ $$$${prove}\:\:{f}:\left({X}_{\mathrm{1}} ,\tau_{\mathrm{1}} \right)\rightarrow\left({X}_{\mathrm{2}} ,\tau_{\mathrm{2}} \right)\:{is}\: \\ $$$${a}\:{continuous}\:{function}\:{if}\:{only} \\ $$$${if}\:\:{for}\:{any}\:{subset}\:{A}\subseteq{X}_{\mathrm{1}} \:: \\ $$$$\:\:\:\:\:\:\:{f}\left({cl}\left({A}\right)\right)\subseteq{cl}\left({f}\left({A}\right)\right) \\ $$$$\: \\ $$
Question Number 123694 Answers: 0 Comments: 1
$${sinh}\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\right)+{sinh}\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)+{sinh}\left(\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right)+.... \\ $$
Question Number 123653 Answers: 1 Comments: 0
Question Number 123651 Answers: 1 Comments: 0
Question Number 123650 Answers: 0 Comments: 4
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{10}}+\frac{\mathrm{1}}{\mathrm{14}}−\frac{\mathrm{1}}{\mathrm{16}}+... \\ $$
Question Number 123620 Answers: 0 Comments: 0
$$\frac{{coth}\left(\pi\right)}{\mathrm{1}^{\mathrm{7}} }+\frac{{coth}\left(\mathrm{2}\pi\right)}{\mathrm{2}^{\mathrm{7}} }+\frac{{coth}\left(\mathrm{3}\pi\right)}{\mathrm{3}^{\mathrm{7}} }+... \\ $$
Question Number 123460 Answers: 0 Comments: 1
$${sinh}^{−\mathrm{1}} \left(\mathrm{1}\right)+{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)+{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right)+{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }\right)+.... \\ $$$$ \\ $$
Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54 Pg 55 Pg 56 Pg 57
Terms of Service
Privacy Policy
Contact: info@tinkutara.com