Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 52
Question Number 123135 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{ta}−{bt}^{\mathrm{3}} }{\left(\mathrm{1}+{ct}^{\mathrm{2}} \right)\left({e}^{\mathrm{2}\pi{t}} −\mathrm{1}\right)}{dt} \\ $$
Question Number 122996 Answers: 0 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{4}} +\mathrm{1}} \\ $$
Question Number 122960 Answers: 0 Comments: 2
$$\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{2}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{2}+\frac{\mathrm{7}^{\mathrm{2}} }{....}}}}}=\frac{\pi}{\mathrm{4}}\:\: \\ $$$$ \\ $$
Question Number 122917 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{tan}^{−\mathrm{1}} {n}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 122862 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{7}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{10}} }{dx} \\ $$
Question Number 122740 Answers: 0 Comments: 3
$${Prove}\:{that} \\ $$$${tanx}=\frac{\mathrm{2}}{\pi−\mathrm{2}{x}}−\frac{\mathrm{2}}{\pi+\mathrm{2}{x}}+\frac{\mathrm{2}}{\mathrm{3}{x}−\mathrm{2}\pi}−\frac{\mathrm{2}}{\mathrm{3}{x}+\mathrm{2}\pi}+\frac{\mathrm{2}}{\mathrm{5}{x}−\mathrm{2}\pi}−\frac{\mathrm{2}}{\mathrm{5}{x}+\mathrm{2}\pi}+.... \\ $$
Question Number 122668 Answers: 0 Comments: 0
$${Esta}\:{has}\:{a} \\ $$$$\:{directory}.\:{it}\:{contains}\: \\ $$$${n}\:\left({n}<\mathrm{1000}\right)\:{pages}\:{where}\: \\ $$$$\mathrm{999991}\:{subscribers}\:{are}\:{registered} \\ $$$${and}\:{each}\:{page}\:{contains}\:{the}\: \\ $$$${same}\:{numbers}\:{of}\:{subscribers}. \\ $$$${How}\:{many}\:{pages}\:{does}\:{this} \\ $$$${directory}\:{has}? \\ $$
Question Number 122641 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} +\mathrm{1}} \\ $$
Question Number 122638 Answers: 0 Comments: 1
Question Number 122518 Answers: 1 Comments: 1
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{17}}+... \\ $$
Question Number 122514 Answers: 2 Comments: 1
Question Number 122336 Answers: 0 Comments: 0
$${please}\:{prove}\:{that}\:{sup}\left(−{A}\right)=−{inf}\left({A}\right) \\ $$
Question Number 122335 Answers: 0 Comments: 0
Question Number 122322 Answers: 4 Comments: 0
$$\mid{x}+\mathrm{1}\mid<\mid{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\mid \\ $$$${solve}\:{for}\:{x} \\ $$
Question Number 122318 Answers: 0 Comments: 0
Question Number 122303 Answers: 1 Comments: 3
$$\frac{{log}\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{{log}\mathrm{3}}{\:\sqrt{\mathrm{3}}}+\frac{{log}\mathrm{5}}{\:\sqrt{\mathrm{5}}}−\frac{{log}\mathrm{7}}{\:\sqrt{\mathrm{7}}}+..{C}=\left(\frac{\pi}{\mathrm{4}}−\frac{\gamma}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{2}\pi\right)\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+..{C}\right) \\ $$$$\gamma\:=\mathscr{E}{ulerian}\:{constant} \\ $$
Question Number 122302 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{4}+{x}^{\mathrm{2}} \right)\left(\mathrm{16}+{x}^{\mathrm{2}} \right)\left(\mathrm{64}+{x}^{\mathrm{2}} \right)} \\ $$
Question Number 122317 Answers: 0 Comments: 0
$$\mathrm{1}+\mathrm{9}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{4}} +\mathrm{17}\left(\frac{\mathrm{1}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}\right)^{\mathrm{4}} +\mathrm{25}\left(\frac{\mathrm{1}.\mathrm{5}.\mathrm{9}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}\right)^{\mathrm{4}} +...=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}\left(\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right)} \\ $$
Question Number 122176 Answers: 2 Comments: 2
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt[{\mathrm{7}}]{{tanx}}\:{dx} \\ $$
Question Number 122377 Answers: 1 Comments: 4
Question Number 122069 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{97}}]{{x}^{\mathrm{96}} −{x}^{\mathrm{97}} }}{dx} \\ $$
Question Number 122023 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {F}_{{n}} }{\mathrm{7}^{{n}} }\:\:\:\:\:\:\left({F}_{{n}} \:{denotes}\:{Fibbonocci}\:{sequence}\right) \\ $$
Question Number 122013 Answers: 0 Comments: 6
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{24}}} {log}\left({tan}\theta\right){d}\theta \\ $$$${Problem}\:{source}:\:{brilliant} \\ $$
Question Number 121983 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx}\:\left({In}\:{closed}\:{form}\right)\:\:\left({n}\in\mathbb{N}\right) \\ $$
Question Number 121914 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}\theta\right)^{−\frac{\mathrm{1}}{{n}}} {d}\theta \\ $$
Question Number 121739 Answers: 1 Comments: 0
$$\frac{\mathrm{1}^{\mathrm{13}} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}+\frac{\mathrm{2}^{\mathrm{13}} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}+\frac{\mathrm{3}^{\mathrm{13}} }{{e}^{\mathrm{6}\pi} −\mathrm{1}}+.... \\ $$
Pg 47 Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54 Pg 55 Pg 56
Terms of Service
Privacy Policy
Contact: info@tinkutara.com