Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 52
Question Number 125411 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\sqrt{{n}}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 125283 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({log}\left({x}+\mathrm{1}\right)\right)}{\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 125167 Answers: 0 Comments: 1
$${f}\left({x}\right)=\int\frac{{cos}\left({sinx}\right)+{cos}^{\mathrm{2}} {x}}{\mathrm{1}+{sinxsin}\left({sinx}\right)}{dx} \\ $$$${Find}\:{f}\left(\mathrm{1}\right) \\ $$
Question Number 125086 Answers: 0 Comments: 1
Question Number 125014 Answers: 0 Comments: 0
Question Number 124892 Answers: 0 Comments: 2
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{5}.\mathrm{5}!}−\frac{\mathrm{1}}{\mathrm{7}.\mathrm{7}!}+... \\ $$
Question Number 124891 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{24}}} {log}\left({tan}\theta\right){d}\theta \\ $$
Question Number 124861 Answers: 0 Comments: 0
$$\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!}{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)!}−\frac{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)!\mathrm{1}!}{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)!}+\frac{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)!\mathrm{2}!}{\left(\frac{\mathrm{7}}{\mathrm{2}}\right)!}−.... \\ $$
Question Number 124718 Answers: 0 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{n}^{\mathrm{2}} {log}\left({n}+\mathrm{1}\right)\:\:\:\:\left({In}\:{explicit}\:{form}\:\right) \\ $$
Question Number 124642 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:{Evaluate}\::\: \\ $$$$\:\:\:\int\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}−\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\right)^{\mathrm{4}} }}{dx} \\ $$
Question Number 124595 Answers: 4 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\:\omega\:=\:{e}^{{i}\theta} ,\:\theta\neq\:{n}\pi,\:{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\left(\mathrm{1}\right)\:\frac{\omega^{\mathrm{2}} −\mathrm{1}}{\omega}\:=\:\mathrm{2}{i}\:\mathrm{sin}\:\theta \\ $$$$\:\left(\mathrm{2}\right)\:\left(\mathrm{1}\:+\:\omega\right)^{{n}} \:=\:\mathrm{2}^{{n}} \mathrm{cos}^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}\left({in}\theta\right)} \\ $$
Question Number 124528 Answers: 0 Comments: 0
Question Number 124487 Answers: 1 Comments: 1
Question Number 124474 Answers: 1 Comments: 1
$$\left(\frac{\mathrm{4}}{−\mathrm{6}+{i}\sqrt{\mathrm{5}}}\right)^{\mathrm{4}} =??? \\ $$$$ \\ $$$${polar}???? \\ $$
Question Number 124461 Answers: 2 Comments: 2
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{7}} } {sin}\left({x}^{\mathrm{7}} \right){dx} \\ $$
Question Number 124459 Answers: 1 Comments: 1
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)+... \\ $$
Question Number 124347 Answers: 1 Comments: 1
Question Number 124321 Answers: 2 Comments: 0
$${f}\left({x},{y},{z}\right)={z}^{\mathrm{2}} {yz}^{\mathrm{3}} \\ $$$${A}={xzi}−{y}^{\mathrm{2}} {j}+\mathrm{2}{x}^{\mathrm{2}} {yk} \\ $$$${div}\left({fA}\right)=? \\ $$$${curl}\left({fA}\right)=? \\ $$
Question Number 124320 Answers: 2 Comments: 0
$${z}+\frac{\mathrm{1}}{{z}}=\mathrm{1} \\ $$$${z}^{\mathrm{3}} =?? \\ $$
Question Number 124300 Answers: 0 Comments: 0
Question Number 124302 Answers: 1 Comments: 0
$${n}=\mathrm{2}^{{n}−\mathrm{1}} {sin}\left(\frac{\pi}{{n}}\right){sin}\left(\frac{\mathrm{2}\pi}{{n}}\right)....{sin}\left(\frac{{n}−\mathrm{1}}{{n}}\pi\right)\:\:{prove}\: \\ $$$$ \\ $$
Question Number 124271 Answers: 0 Comments: 0
Question Number 124178 Answers: 1 Comments: 6
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{{cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{4}} {x}}}{dx} \\ $$
Question Number 123947 Answers: 0 Comments: 0
$$\frac{\mathrm{9}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{9}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }.\frac{\mathrm{18}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{18}^{\mathrm{2}} −\mathrm{0}^{\mathrm{2}} }.\frac{\mathrm{27}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{27}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }.\frac{\mathrm{36}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }{\mathrm{36}^{\mathrm{2}} −\mathrm{0}^{\mathrm{2}} }..... \\ $$
Question Number 123845 Answers: 1 Comments: 1
Question Number 123823 Answers: 1 Comments: 0
Pg 47 Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54 Pg 55 Pg 56
Terms of Service
Privacy Policy
Contact: info@tinkutara.com