Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 51

Question Number 128845    Answers: 1   Comments: 0

1+(1/2).((1.4)/((5.1!)^2 ))+(1/3).((1.4.6.9)/((5^2 .2!)^2 ))+(1/4).((1.4.6.9.11.14)/((5^3 .3!)^2 ))+...=((b^2 (√((b−(√b))/2)))/(aπ)) Find 5a−8b

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}.\mathrm{4}}{\left(\mathrm{5}.\mathrm{1}!\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}}.\frac{\mathrm{1}.\mathrm{4}.\mathrm{6}.\mathrm{9}}{\left(\mathrm{5}^{\mathrm{2}} .\mathrm{2}!\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}.\mathrm{4}.\mathrm{6}.\mathrm{9}.\mathrm{11}.\mathrm{14}}{\left(\mathrm{5}^{\mathrm{3}} .\mathrm{3}!\right)^{\mathrm{2}} }+...=\frac{{b}^{\mathrm{2}} \sqrt{\frac{{b}−\sqrt{{b}}}{\mathrm{2}}}}{{a}\pi} \\ $$$${Find}\:\mathrm{5}{a}−\mathrm{8}{b} \\ $$

Question Number 128731    Answers: 0   Comments: 2

for a>b>0 show that b<((ax^x +bx^(−x) )/(e^x +e^(−x) ))<a

$$\mathrm{for}\:\:\mathrm{a}>\mathrm{b}>\mathrm{0}\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{b}<\frac{\mathrm{ax}^{\mathrm{x}} +\mathrm{bx}^{−\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} }<\mathrm{a} \\ $$

Question Number 128725    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((coth(nπ))/n^4 )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left({n}\pi\right)}{{n}^{\mathrm{4}} } \\ $$

Question Number 128561    Answers: 1   Comments: 0

Question Number 128566    Answers: 0   Comments: 1

1+(1/2)((1/2).(1/(1!)))^2 +(1/3)(((1.3)/2^2 ).(1/(2!)))^2 +(1/4)(((1.3.5)/2^3 ).(1/(3!)))^2 +...=_2 F_1 ((1/2),(1/2);2;1)=(4/π)

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{1}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }.\frac{\mathrm{1}}{\mathrm{2}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }.\frac{\mathrm{1}}{\mathrm{3}!}\right)^{\mathrm{2}} +...=_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{2};\mathrm{1}\right)=\frac{\mathrm{4}}{\pi} \\ $$

Question Number 128557    Answers: 1   Comments: 0

$$\: \: \: \: \: \: \: \: \: \\ $$$$\: \: \: \\ $$

Question Number 128522    Answers: 0   Comments: 0

f(t)=t+1 0≤t≤2 =3 t>2 find laplace transformation?

$${f}\left({t}\right)={t}+\mathrm{1}\:\:\:\:\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}\:\:\:\:\:\:\:\:\:\:{t}>\mathrm{2} \\ $$$${find}\:{laplace}\:{transformation}? \\ $$

Question Number 128485    Answers: 1   Comments: 0

f(t)=((1−cos2t)/t) find laplace transformation?

$${f}\left({t}\right)=\frac{\mathrm{1}−{cos}\mathrm{2}{t}}{{t}} \\ $$$${find}\:{laplace}\:{transformation}? \\ $$

Question Number 128460    Answers: 2   Comments: 0

2e^(3t) sin4t find laplace transformation?

$$\mathrm{2}{e}^{\mathrm{3}{t}} {sin}\mathrm{4}{t}\: \\ $$$${find}\:{laplace}\:{transformation}? \\ $$

Question Number 128445    Answers: 0   Comments: 0

tsinh2t sin3t find the laplace transformation?

$${tsinh}\mathrm{2}{t}\:{sin}\mathrm{3}{t}\: \\ $$$${find}\:{the}\:{laplace}\:{transformation}? \\ $$

Question Number 128321    Answers: 0   Comments: 1

Prove Σ_(n≥0) ^∞ (((a)_n (b)_n )/((c)_n n!))=((Γ(c)Γ(c−a−b))/(Γ(c−a)Γ(c−b))) Where (a)_n =Π_(k=0) ^(n−1) (k+a)

$${Prove} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({a}\right)_{{n}} \left({b}\right)_{{n}} }{\left({c}\right)_{{n}} {n}!}=\frac{\Gamma\left({c}\right)\Gamma\left({c}−{a}−{b}\right)}{\Gamma\left({c}−{a}\right)\Gamma\left({c}−{b}\right)} \\ $$$${Where}\:\left({a}\right)_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({k}+{a}\right) \\ $$

Question Number 128382    Answers: 0   Comments: 1

y=x^x^2

$${y}={x}^{{x}^{\mathrm{2}} } \\ $$

Question Number 128256    Answers: 0   Comments: 6

1+(1/(2!1!))((1/2))^2 +(1/(3!2!))(((1.3)/2^2 ))^2 +(1/(4!3!))(((1.3.5)/2^3 ))^2 +....=(4/π) Prove the above Relation

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}!\mathrm{1}!}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}!\mathrm{2}!}\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}!\mathrm{3}!}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }\right)^{\mathrm{2}} +....=\frac{\mathrm{4}}{\pi} \\ $$$${Prove}\:{the}\:{above}\:{Relation} \\ $$

Question Number 128236    Answers: 0   Comments: 1

(1/6)Σ_p ^∞ ((logp)/(p^2 −1))=((log1)/π^2 )+((log2)/(4π^2 ))+((log3)/(9π^2 ))+... (p=prime)

$$\frac{\mathrm{1}}{\mathrm{6}}\underset{{p}} {\overset{\infty} {\sum}}\frac{{logp}}{{p}^{\mathrm{2}} −\mathrm{1}}=\frac{{log}\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{{log}\mathrm{2}}{\mathrm{4}\pi^{\mathrm{2}} }+\frac{{log}\mathrm{3}}{\mathrm{9}\pi^{\mathrm{2}} }+...\:\:\:\left({p}={prime}\right) \\ $$

Question Number 128197    Answers: 1   Comments: 1

Question Number 128182    Answers: 1   Comments: 1

Question Number 128126    Answers: 1   Comments: 0

(4/(99)) + (7/(999)) + ((11)/(999999)) = ?

$$\:\frac{\mathrm{4}}{\mathrm{99}}\:+\:\frac{\mathrm{7}}{\mathrm{999}}\:+\:\frac{\mathrm{11}}{\mathrm{999999}}\:=\:? \\ $$

Question Number 128122    Answers: 1   Comments: 0

1+(1/(16))+(5^2 /(16^2 .2!))+((5^2 .9^2 )/(16^3 .3!))+((5^2 .9^2 .13^2 )/(16^4 .4!))+...=((√π)/(Γ^2 ((3/4))))=F_1 ((1/4),(1/4),1;1) Prove The above relation Where F_1 (Φ,ϕ,γ;μ)=Σ_(n≥0) ^∞ (((Φ)_n (ϕ)_n )/(n!(γ)_n ))μ^n (ζ)_n =ζ(ζ+1)(ζ+2)...(ζ+n−1)

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{2}} .\mathrm{2}!}+\frac{\mathrm{5}^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{3}} .\mathrm{3}!}+\frac{\mathrm{5}^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} .\mathrm{13}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{4}} .\mathrm{4}!}+...=\frac{\sqrt{\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)}={F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{4}},\mathrm{1};\mathrm{1}\right) \\ $$$${Prove}\:{The}\:{above}\:{relation} \\ $$$${Where} \\ $$$${F}_{\mathrm{1}} \left(\Phi,\varphi,\gamma;\mu\right)=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\Phi\right)_{{n}} \left(\varphi\right)_{{n}} }{{n}!\left(\gamma\right)_{{n}} }\mu^{{n}} \\ $$$$\left(\zeta\right)_{{n}} =\zeta\left(\zeta+\mathrm{1}\right)\left(\zeta+\mathrm{2}\right)...\left(\zeta+{n}−\mathrm{1}\right) \\ $$

Question Number 128112    Answers: 3   Comments: 0

1 + 2 + 3 + 4 + ..... + 100 = ?

$$\:\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:.....\:+\:\mathrm{100}\:=\:? \\ $$

Question Number 128110    Answers: 1   Comments: 0

∫_0 ^∞ ∫_0 ^∞ ((sinx sin(x+y))/(x(x+y)))dxdy

$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{sinx}\:{sin}\left({x}+{y}\right)}{{x}\left({x}+{y}\right)}{dxdy} \\ $$

Question Number 128093    Answers: 1   Comments: 0

Question Number 128083    Answers: 2   Comments: 0

((8 − i)/(3 − 2i)) If the expression above is rewritten in the form a + bi, where a and b are real numbers, what is the value of a? A. 2 B. (8/3) C. 3 D. ((11)/3)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{8}\:−\:{i}}{\mathrm{3}\:−\:\mathrm{2}{i}} \\ $$$$\:\mathrm{If}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{above}\:\mathrm{is}\:\mathrm{rewritten}\: \\ $$$$\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{a}\:+\:{bi},\:\mathrm{where}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are} \\ $$$$\:\mathrm{real}\:\mathrm{numbers},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}? \\ $$$$\:\mathrm{A}.\:\mathrm{2} \\ $$$$\:\mathrm{B}.\:\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\:\mathrm{C}.\:\mathrm{3} \\ $$$$\:\mathrm{D}.\:\frac{\mathrm{11}}{\mathrm{3}} \\ $$

Question Number 128030    Answers: 1   Comments: 0

99 × 99 = 9801 999 × 999 = 998001 9999 × 9999 = 99980001 99999 × 99999 = ? 999999 × 999999 = ?

$$\:\mathrm{99}\:×\:\mathrm{99}\:=\:\mathrm{9801} \\ $$$$\:\mathrm{999}\:×\:\mathrm{999}\:=\:\mathrm{998001} \\ $$$$\:\mathrm{9999}\:×\:\mathrm{9999}\:=\:\mathrm{99980001} \\ $$$$\:\mathrm{99999}\:×\:\mathrm{99999}\:=\:? \\ $$$$\:\mathrm{999999}\:×\:\mathrm{999999}\:=\:? \\ $$

Question Number 128008    Answers: 1   Comments: 0

If 347.9823 = (3/P) + 4Q + 7R + (9/(10)) + (8/(100)) + (2/S) + (3/T) Then find the value of P + Q + R + S + T

$$\mathrm{If}\:\mathrm{347}.\mathrm{9823}\:=\:\frac{\mathrm{3}}{{P}}\:+\:\mathrm{4}{Q}\:+\:\mathrm{7}{R}\:+\:\frac{\mathrm{9}}{\mathrm{10}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{8}}{\mathrm{100}}\:+\:\frac{\mathrm{2}}{{S}}\:+\:\frac{\mathrm{3}}{{T}} \\ $$$${Then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$${P}\:+\:{Q}\:+\:{R}\:+\:{S}\:+\:{T} \\ $$

Question Number 128001    Answers: 1   Comments: 0

(x − a) (x − b) (x − c) ..... (x − z) = ?

$$\left(\mathrm{x}\:−\:\mathrm{a}\right)\:\left(\mathrm{x}\:−\:\mathrm{b}\right)\:\left(\mathrm{x}\:−\:\mathrm{c}\right)\:.....\:\left(\mathrm{x}\:−\:\mathrm{z}\right)\:=\:? \\ $$

Question Number 127974    Answers: 1   Comments: 1

θ^(••) +(g/l)sinθ=0 Exact form (May include elliptic integral)

$$\overset{\bullet\bullet} {\theta}+\frac{{g}}{{l}}{sin}\theta=\mathrm{0} \\ $$$${Exact}\:{form}\:\left({May}\:{include}\:{elliptic}\:{integral}\right) \\ $$

  Pg 46      Pg 47      Pg 48      Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54      Pg 55   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com