Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 51
Question Number 128845 Answers: 1 Comments: 0
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}.\mathrm{4}}{\left(\mathrm{5}.\mathrm{1}!\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}}.\frac{\mathrm{1}.\mathrm{4}.\mathrm{6}.\mathrm{9}}{\left(\mathrm{5}^{\mathrm{2}} .\mathrm{2}!\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}.\mathrm{4}.\mathrm{6}.\mathrm{9}.\mathrm{11}.\mathrm{14}}{\left(\mathrm{5}^{\mathrm{3}} .\mathrm{3}!\right)^{\mathrm{2}} }+...=\frac{{b}^{\mathrm{2}} \sqrt{\frac{{b}−\sqrt{{b}}}{\mathrm{2}}}}{{a}\pi} \\ $$$${Find}\:\mathrm{5}{a}−\mathrm{8}{b} \\ $$
Question Number 128731 Answers: 0 Comments: 2
$$\mathrm{for}\:\:\mathrm{a}>\mathrm{b}>\mathrm{0}\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{b}<\frac{\mathrm{ax}^{\mathrm{x}} +\mathrm{bx}^{−\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} }<\mathrm{a} \\ $$
Question Number 128725 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left({n}\pi\right)}{{n}^{\mathrm{4}} } \\ $$
Question Number 128561 Answers: 1 Comments: 0
Question Number 128566 Answers: 0 Comments: 1
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{1}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }.\frac{\mathrm{1}}{\mathrm{2}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }.\frac{\mathrm{1}}{\mathrm{3}!}\right)^{\mathrm{2}} +...=_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{2};\mathrm{1}\right)=\frac{\mathrm{4}}{\pi} \\ $$
Question Number 128557 Answers: 1 Comments: 0
$$\: \: \: \: \: \: \: \: \: \\ $$$$\: \: \: \\ $$
Question Number 128522 Answers: 0 Comments: 0
$${f}\left({t}\right)={t}+\mathrm{1}\:\:\:\:\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}\:\:\:\:\:\:\:\:\:\:{t}>\mathrm{2} \\ $$$${find}\:{laplace}\:{transformation}? \\ $$
Question Number 128485 Answers: 1 Comments: 0
$${f}\left({t}\right)=\frac{\mathrm{1}−{cos}\mathrm{2}{t}}{{t}} \\ $$$${find}\:{laplace}\:{transformation}? \\ $$
Question Number 128460 Answers: 2 Comments: 0
$$\mathrm{2}{e}^{\mathrm{3}{t}} {sin}\mathrm{4}{t}\: \\ $$$${find}\:{laplace}\:{transformation}? \\ $$
Question Number 128445 Answers: 0 Comments: 0
$${tsinh}\mathrm{2}{t}\:{sin}\mathrm{3}{t}\: \\ $$$${find}\:{the}\:{laplace}\:{transformation}? \\ $$
Question Number 128321 Answers: 0 Comments: 1
$${Prove} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({a}\right)_{{n}} \left({b}\right)_{{n}} }{\left({c}\right)_{{n}} {n}!}=\frac{\Gamma\left({c}\right)\Gamma\left({c}−{a}−{b}\right)}{\Gamma\left({c}−{a}\right)\Gamma\left({c}−{b}\right)} \\ $$$${Where}\:\left({a}\right)_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({k}+{a}\right) \\ $$
Question Number 128382 Answers: 0 Comments: 1
$${y}={x}^{{x}^{\mathrm{2}} } \\ $$
Question Number 128256 Answers: 0 Comments: 6
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}!\mathrm{1}!}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}!\mathrm{2}!}\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}!\mathrm{3}!}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }\right)^{\mathrm{2}} +....=\frac{\mathrm{4}}{\pi} \\ $$$${Prove}\:{the}\:{above}\:{Relation} \\ $$
Question Number 128236 Answers: 0 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{6}}\underset{{p}} {\overset{\infty} {\sum}}\frac{{logp}}{{p}^{\mathrm{2}} −\mathrm{1}}=\frac{{log}\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{{log}\mathrm{2}}{\mathrm{4}\pi^{\mathrm{2}} }+\frac{{log}\mathrm{3}}{\mathrm{9}\pi^{\mathrm{2}} }+...\:\:\:\left({p}={prime}\right) \\ $$
Question Number 128197 Answers: 1 Comments: 1
Question Number 128182 Answers: 1 Comments: 1
Question Number 128126 Answers: 1 Comments: 0
$$\:\frac{\mathrm{4}}{\mathrm{99}}\:+\:\frac{\mathrm{7}}{\mathrm{999}}\:+\:\frac{\mathrm{11}}{\mathrm{999999}}\:=\:? \\ $$
Question Number 128122 Answers: 1 Comments: 0
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{2}} .\mathrm{2}!}+\frac{\mathrm{5}^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{3}} .\mathrm{3}!}+\frac{\mathrm{5}^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} .\mathrm{13}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{4}} .\mathrm{4}!}+...=\frac{\sqrt{\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)}={F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{4}},\mathrm{1};\mathrm{1}\right) \\ $$$${Prove}\:{The}\:{above}\:{relation} \\ $$$${Where} \\ $$$${F}_{\mathrm{1}} \left(\Phi,\varphi,\gamma;\mu\right)=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\Phi\right)_{{n}} \left(\varphi\right)_{{n}} }{{n}!\left(\gamma\right)_{{n}} }\mu^{{n}} \\ $$$$\left(\zeta\right)_{{n}} =\zeta\left(\zeta+\mathrm{1}\right)\left(\zeta+\mathrm{2}\right)...\left(\zeta+{n}−\mathrm{1}\right) \\ $$
Question Number 128112 Answers: 3 Comments: 0
$$\:\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:.....\:+\:\mathrm{100}\:=\:? \\ $$
Question Number 128110 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{sinx}\:{sin}\left({x}+{y}\right)}{{x}\left({x}+{y}\right)}{dxdy} \\ $$
Question Number 128093 Answers: 1 Comments: 0
Question Number 128083 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{8}\:−\:{i}}{\mathrm{3}\:−\:\mathrm{2}{i}} \\ $$$$\:\mathrm{If}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{above}\:\mathrm{is}\:\mathrm{rewritten}\: \\ $$$$\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{a}\:+\:{bi},\:\mathrm{where}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are} \\ $$$$\:\mathrm{real}\:\mathrm{numbers},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}? \\ $$$$\:\mathrm{A}.\:\mathrm{2} \\ $$$$\:\mathrm{B}.\:\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\:\mathrm{C}.\:\mathrm{3} \\ $$$$\:\mathrm{D}.\:\frac{\mathrm{11}}{\mathrm{3}} \\ $$
Question Number 128030 Answers: 1 Comments: 0
$$\:\mathrm{99}\:×\:\mathrm{99}\:=\:\mathrm{9801} \\ $$$$\:\mathrm{999}\:×\:\mathrm{999}\:=\:\mathrm{998001} \\ $$$$\:\mathrm{9999}\:×\:\mathrm{9999}\:=\:\mathrm{99980001} \\ $$$$\:\mathrm{99999}\:×\:\mathrm{99999}\:=\:? \\ $$$$\:\mathrm{999999}\:×\:\mathrm{999999}\:=\:? \\ $$
Question Number 128008 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{347}.\mathrm{9823}\:=\:\frac{\mathrm{3}}{{P}}\:+\:\mathrm{4}{Q}\:+\:\mathrm{7}{R}\:+\:\frac{\mathrm{9}}{\mathrm{10}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{8}}{\mathrm{100}}\:+\:\frac{\mathrm{2}}{{S}}\:+\:\frac{\mathrm{3}}{{T}} \\ $$$${Then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$${P}\:+\:{Q}\:+\:{R}\:+\:{S}\:+\:{T} \\ $$
Question Number 128001 Answers: 1 Comments: 0
$$\left(\mathrm{x}\:−\:\mathrm{a}\right)\:\left(\mathrm{x}\:−\:\mathrm{b}\right)\:\left(\mathrm{x}\:−\:\mathrm{c}\right)\:.....\:\left(\mathrm{x}\:−\:\mathrm{z}\right)\:=\:? \\ $$
Question Number 127974 Answers: 1 Comments: 1
$$\overset{\bullet\bullet} {\theta}+\frac{{g}}{{l}}{sin}\theta=\mathrm{0} \\ $$$${Exact}\:{form}\:\left({May}\:{include}\:{elliptic}\:{integral}\right) \\ $$
Pg 46 Pg 47 Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54 Pg 55
Terms of Service
Privacy Policy
Contact: info@tinkutara.com