Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 47
Question Number 131795 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{10}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{17}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{26}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{37}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{50}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{65}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{82}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{101}^{\mathrm{3}} }+... \\ $$
Question Number 131686 Answers: 1 Comments: 6
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left({n}\pi\right)}{{n}^{\mathrm{3}} } \\ $$
Question Number 131580 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{disprove}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{97}\right)^{\mathrm{2}} }=\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{97}\left(\boldsymbol{{e}}^{\boldsymbol{\pi}\sqrt{\mathrm{97}}} −{e}^{−\boldsymbol{\pi}\sqrt{\mathrm{97}}} \right)^{\mathrm{2}} }+\frac{\boldsymbol{\pi}}{\mathrm{388}}.\frac{{e}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} +\mathrm{1}}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} −\mathrm{1}}+\frac{\mathrm{37635}}{\mathrm{37636}}−\frac{\mathrm{1}}{\:\mathrm{388}\sqrt{\mathrm{97}}} \\ $$
Question Number 131507 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\mathrm{1}/\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{2019}\right)^{\mathrm{2021}} +\left(\mathrm{2021}\right)^{\mathrm{2019}} \:\mathrm{divided}\:\:\mathrm{by}\:\mathrm{2020} \\ $$$$\:\:\:\mathrm{2}/\mathrm{Show}\:\mathrm{that}\:\mathrm{2222}^{\mathrm{5555}} +\mathrm{5555}^{\mathrm{2222}} \:\mathrm{divided}\:\:\mathrm{by}\:\mathrm{7} \\ $$$$ \\ $$
Question Number 131346 Answers: 0 Comments: 0
Question Number 131094 Answers: 1 Comments: 1
$$\:\: \\ $$$$\:\:\:\mathrm{Calculate} \\ $$$$\:\:\mathrm{1}/\:\mathrm{I}\:=\:\oint_{\mathrm{c}^{+} } \frac{\mathrm{zdz}}{\left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{z}^{\mathrm{2}} −\mathrm{2z}+\mathrm{1}−\mathrm{2i}\right)}\:\:,\mathrm{C}=\left\{\mathrm{z}/\mid\mathrm{z}\mid=\mathrm{2}\right\}\: \\ $$$$\:\:\mathrm{2}/\:\mathrm{J}\:=\oint_{\mathrm{c}^{+} } \frac{\mathrm{ch}\left(\mathrm{z}\right)\mathrm{dz}}{\mathrm{z}\left(\mathrm{e}^{\mathrm{z}} −\mathrm{1}\right)}\:\:,\:\:\mathrm{C}=\left\{\mathrm{z}/\mid\mathrm{z}−\mathrm{3i}\mid=\mathrm{4}\right\} \\ $$$$\:\:\mathrm{3}/\:\mathrm{K}=\oint_{\mathrm{c}^{+} } \frac{\mathrm{sin}\left(\mathrm{z}\right)\mathrm{dz}}{\mathrm{z}^{\mathrm{3}} \left(\mathrm{z}+\mathrm{1}\right)^{\mathrm{2}} }\:\:,\:\mathrm{C}=\left\{\mathrm{z}/\mid\mathrm{z}\mid=\mathrm{2}\right\} \\ $$
Question Number 131083 Answers: 0 Comments: 0
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}−\frac{\mathrm{16}}{\mathrm{13}−\frac{\mathrm{81}}{\mathrm{25}−\frac{\mathrm{256}}{\mathrm{41}−\frac{\mathrm{625}}{\mathrm{61}−\frac{\mathrm{1296}}{\mathrm{85}−\frac{\mathrm{2401}}{\mathrm{113}−...}}}}}}}=\frac{\mathrm{6}}{\boldsymbol{\pi}^{\mathrm{2}} } \\ $$
Question Number 130992 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{I}\:=\:\frac{\mathrm{V}}{\mathrm{R}}\:\mathrm{and}\:\mathrm{V}=\mathrm{250}\:\mathrm{volts}\:\mathrm{and}\:\mathrm{R}=\mathrm{50}\:\mathrm{ohms} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{change}\:\mathrm{in}\:\mathrm{I}\:\mathrm{resulting}\:\mathrm{from}\:\mathrm{an}\: \\ $$$$\mathrm{increase}\:\mathrm{of}\:\mathrm{1}\:\mathrm{volt}\:\mathrm{in}\:\mathrm{V}\:\mathrm{and}\:\mathrm{increase}\:\mathrm{of}\:\mathrm{0}.\mathrm{5}\:\mathrm{ohm} \\ $$$$\mathrm{in}\:\mathrm{R}. \\ $$
Question Number 131078 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{8}} +\mathrm{1}} \\ $$
Question Number 130978 Answers: 1 Comments: 5
Question Number 130925 Answers: 2 Comments: 4
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Problem} \\ $$$$\:\:\:\mathrm{Without}\:\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\:\:\mathrm{calculate} \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{x}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)} \\ $$
Question Number 130912 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sech}\left({n}\pi\right)}{{n}} \\ $$
Question Number 130849 Answers: 3 Comments: 1
Question Number 130754 Answers: 0 Comments: 0
Question Number 130752 Answers: 0 Comments: 0
Question Number 130748 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{11}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{13}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{19}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{21}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{29}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{31}^{\mathrm{3}} }+.. \\ $$
Question Number 130604 Answers: 3 Comments: 0
$$\frac{{d}}{{dx}}\left({x}!\right)=??? \\ $$
Question Number 130555 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\left(\mathrm{2}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}+\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{6}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{6}+\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{10}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{10}+\pi\right)^{\mathrm{2}} }+..=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}{sec}^{\mathrm{2}} \left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$${Prove}\:{or}\:{disprove} \\ $$
Question Number 130549 Answers: 2 Comments: 0
$${the}\:{solution}\:{of}\:{equation}\: \\ $$$$\mid{z}\mid−{z}\:=\:\mathrm{1}+\mathrm{2}{i}\:{is}\:\_\_ \\ $$
Question Number 130449 Answers: 0 Comments: 0
$$\frac{\mathrm{1}}{\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }−\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\left(\mathrm{6}−\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }−\frac{\mathrm{1}}{\left(\mathrm{6}+\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\left(\mathrm{10}−\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }−\frac{\mathrm{1}}{\left(\mathrm{10}+\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }+.. \\ $$
Question Number 130415 Answers: 0 Comments: 1
$$\frac{\pi}{{e}}{sin}\left(\mathrm{1}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{2}{e}^{\mathrm{2}} }{sin}\left(\mathrm{2}\right)+\frac{\pi^{\mathrm{3}} }{\mathrm{3}{e}^{\mathrm{3}} }{sin}\left(\mathrm{3}\right)−\frac{\pi^{\mathrm{4}} }{\mathrm{4}{e}^{\mathrm{4}} }{sin}\left(\mathrm{4}\right)+... \\ $$
Question Number 130399 Answers: 1 Comments: 0
Question Number 130369 Answers: 1 Comments: 0
Question Number 130370 Answers: 2 Comments: 0
Question Number 130337 Answers: 2 Comments: 0
$$\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}\right)^{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{4}} \:\leqslant\:\mathrm{1}\: \\ $$
Question Number 130280 Answers: 0 Comments: 0
$$\frac{{d}\left({u}\varphi\right)}{{dt}}=? \\ $$$$ \\ $$
Pg 42 Pg 43 Pg 44 Pg 45 Pg 46 Pg 47 Pg 48 Pg 49 Pg 50 Pg 51
Terms of Service
Privacy Policy
Contact: info@tinkutara.com