Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 46

Question Number 134399    Answers: 0   Comments: 1

Question Number 134339    Answers: 0   Comments: 1

i can not find my saved pdf please tell me the process to find my pdf

$$\mathrm{i}\:\mathrm{can}\:\mathrm{not}\:\mathrm{find}\:\mathrm{my}\:\mathrm{saved}\:\mathrm{pdf}\:\mathrm{please}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{the}\:\mathrm{process}\:\mathrm{to}\:\mathrm{find}\:\mathrm{my}\:\mathrm{pdf} \\ $$

Question Number 134328    Answers: 1   Comments: 0

express f(x)=x as a sine series in 0<x<π?

$${express}\:{f}\left({x}\right)={x}\:{as}\:{a}\:{sine}\:{series}\: \\ $$$${in}\:\mathrm{0}<{x}<\pi? \\ $$

Question Number 134369    Answers: 1   Comments: 0

Question Number 134259    Answers: 0   Comments: 0

(1/(998))+(1/(998.1995))+(1/(998.1995.2992))+(1/(998.1995.2992.3989))+...=(1/(997))

$$\frac{\mathrm{1}}{\mathrm{998}}+\frac{\mathrm{1}}{\mathrm{998}.\mathrm{1995}}+\frac{\mathrm{1}}{\mathrm{998}.\mathrm{1995}.\mathrm{2992}}+\frac{\mathrm{1}}{\mathrm{998}.\mathrm{1995}.\mathrm{2992}.\mathrm{3989}}+...=\frac{\mathrm{1}}{\mathrm{997}} \\ $$

Question Number 134251    Answers: 0   Comments: 1

Σ_(n=1) ^n nsin(n)

$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{nsin}\left({n}\right) \\ $$

Question Number 134135    Answers: 4   Comments: 0

If P = 2 + (1/P) then what is the answer of P^2 − (1/P^2 ) ?

$$\mathrm{If}\:\mathrm{P}\:=\:\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{P}}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{of} \\ $$$$\mathrm{P}^{\mathrm{2}} \:−\:\frac{\mathrm{1}}{\mathrm{P}^{\mathrm{2}} }\:?\:\: \\ $$

Question Number 134117    Answers: 1   Comments: 0

Question Number 134002    Answers: 1   Comments: 1

What will be the minimum area of a heptagon inscribed in an unit square?

$${What}\:{will}\:{be}\:{the}\:{minimum}\:{area}\:{of}\:{a}\:{heptagon}\:{inscribed}\:{in} \\ $$$${an}\:{unit}\:{square}? \\ $$

Question Number 133988    Answers: 0   Comments: 2

(2+(π/e))(((17)/(16))+(π/(4e)))(((82)/(81))+(π/(9e)))(((257)/(256))+(π/(16e)))...

$$\left(\mathrm{2}+\frac{\pi}{{e}}\right)\left(\frac{\mathrm{17}}{\mathrm{16}}+\frac{\pi}{\mathrm{4}{e}}\right)\left(\frac{\mathrm{82}}{\mathrm{81}}+\frac{\pi}{\mathrm{9}{e}}\right)\left(\frac{\mathrm{257}}{\mathrm{256}}+\frac{\pi}{\mathrm{16}{e}}\right)... \\ $$

Question Number 133838    Answers: 1   Comments: 1

Question Number 133722    Answers: 2   Comments: 0

Question Number 133708    Answers: 1   Comments: 0

Σ_(n=1) ^∞ ((cos((π+e)n))/n^4 )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cos}\left(\left(\pi+{e}\right){n}\right)}{{n}^{\mathrm{4}} } \\ $$

Question Number 133692    Answers: 2   Comments: 1

((sin1)/e)−((sin(2))/(2e^2 ))+((sin(3))/(3e^3 ))−((sin(4))/(4e^4 ))+...=tan^(−1) (((sin(1))/(cos(1)+e)))

$$\frac{{sin}\mathrm{1}}{{e}}−\frac{{sin}\left(\mathrm{2}\right)}{\mathrm{2}{e}^{\mathrm{2}} }+\frac{{sin}\left(\mathrm{3}\right)}{\mathrm{3}{e}^{\mathrm{3}} }−\frac{{sin}\left(\mathrm{4}\right)}{\mathrm{4}{e}^{\mathrm{4}} }+...={tan}^{−\mathrm{1}} \left(\frac{{sin}\left(\mathrm{1}\right)}{{cos}\left(\mathrm{1}\right)+{e}}\right) \\ $$

Question Number 133590    Answers: 1   Comments: 0

A particle performs simple harmonic motion between two points A and B which are 10 m apart on a horizontal straight line. When the particle is 3 m away from the centre, O, of the line AB, its speed is 8 ms^(−1) . Find the least time required for the particle to move from B to the midpoint of OA.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{performs}\:\mathrm{simple}\:\mathrm{harmonic}\:\mathrm{motion}\:\mathrm{between}\:\mathrm{two}\:\mathrm{points} \\ $$$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{which}\:\mathrm{are}\:\mathrm{10}\:\mathrm{m}\:\mathrm{apart}\:\mathrm{on}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{straight}\:\mathrm{line}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{3}\:\mathrm{m}\:\mathrm{away}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre},\:\mathrm{O},\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{AB}, \\ $$$$\mathrm{its}\:\mathrm{speed}\:\mathrm{is}\:\mathrm{8}\:\mathrm{ms}^{−\mathrm{1}} .\:\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{time}\:\mathrm{required}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{to}\:\mathrm{move}\:\mathrm{from}\:\mathrm{B}\:\mathrm{to}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{OA}. \\ $$

Question Number 133482    Answers: 0   Comments: 1

we consider that application n≥1 det : M_n (R)→R A det(A) 1−verify that ∀H∈M_n (R) and t∈R if A=I_n ⇒det(A+tH)=1+t.Tr(H)+○(t) 2−suppose that: A∈GL_n (R) prouve that the differntial of det in A is given by: H Tr[(com(A))^T H] Tr: trace of matrix (com(A))^T : transpose of the comatrix

$$\:\:\:\:{we}\:{consider}\:{that}\:{application}\:{n}\geqslant\mathrm{1} \\ $$$$\:\:{det}\::\:{M}_{{n}} \left(\mathbb{R}\right)\rightarrow\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A} {det}\left({A}\right) \\ $$$$\mathrm{1}−{verify}\:{that}\:\forall{H}\in{M}_{{n}} \left(\mathbb{R}\right)\:{and}\:{t}\in\mathbb{R} \\ $$$$\:{if}\:{A}={I}_{{n}} \Rightarrow{det}\left({A}+{tH}\right)=\mathrm{1}+{t}.{Tr}\left({H}\right)+\circ\left({t}\right) \\ $$$$\mathrm{2}−{suppose}\:{that}:\:{A}\in{GL}_{{n}} \left(\mathbb{R}\right) \\ $$$$\:{prouve}\:{that}\:{the}\:{differntial}\:{of}\:{det}\:{in}\:{A}\:{is}\:{given}\:{by}: \\ $$$$\:\:\:{H} {Tr}\left[\left({com}\left({A}\right)\right)^{{T}} {H}\right] \\ $$$$\:{Tr}:\:{trace}\:{of}\:{matrix} \\ $$$$\left({com}\left({A}\right)\right)^{{T}} :\:{transpose}\:{of}\:{the}\:{comatrix} \\ $$

Question Number 133432    Answers: 1   Comments: 0

((sin(√π))/1^3 )+((sin(√(4π)))/2^3 )+((sin(√(9π)))/3^3 )+((sin(√(16π)))/4^3 )+....=((π(√π))/(12))(1−3(√π)+2π)

$$\frac{{sin}\sqrt{\pi}}{\mathrm{1}^{\mathrm{3}} }+\frac{{sin}\sqrt{\mathrm{4}\pi}}{\mathrm{2}^{\mathrm{3}} }+\frac{{sin}\sqrt{\mathrm{9}\pi}}{\mathrm{3}^{\mathrm{3}} }+\frac{{sin}\sqrt{\mathrm{16}\pi}}{\mathrm{4}^{\mathrm{3}} }+....=\frac{\pi\sqrt{\pi}}{\mathrm{12}}\left(\mathrm{1}−\mathrm{3}\sqrt{\pi}+\mathrm{2}\pi\right) \\ $$

Question Number 133394    Answers: 0   Comments: 3

Question Number 133381    Answers: 0   Comments: 0

1+(1/1^2 )((1/(2.1!)))+(1/3^2 )(((1.3)/(2^2 .2!)))+(1/5^2 )(((1.3.5)/(2^3 .3!)))+...=(π/2)log(2)

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}.\mathrm{1}!}\right)+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} .\mathrm{2}!}\right)+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}!}\right)+...=\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right) \\ $$

Question Number 133344    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((cos((n/π)))/n^4 )=−(1/(48π^4 ))+(1/(12))(1−(1/π^2 ))+(π^4 /(90))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cos}\left(\frac{{n}}{\pi}\right)}{{n}^{\mathrm{4}} }=−\frac{\mathrm{1}}{\mathrm{48}\pi^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{12}}\left(\mathrm{1}−\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\right)+\frac{\pi^{\mathrm{4}} }{\mathrm{90}} \\ $$

Question Number 133321    Answers: 2   Comments: 1

Find x : sin(3x)−sin(2x)−2sin(x) = (√3)cos(x)

$${Find}\:{x}\:: \\ $$$${sin}\left(\mathrm{3}{x}\right)−{sin}\left(\mathrm{2}{x}\right)−\mathrm{2}{sin}\left({x}\right)\:=\:\sqrt{\mathrm{3}}{cos}\left({x}\right) \\ $$

Question Number 133264    Answers: 1   Comments: 1

Σ_(n=1) ^∞ ((sinn)/n^3 )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinn}}{{n}^{\mathrm{3}} } \\ $$

Question Number 133346    Answers: 1   Comments: 0

Find modulus and argumen of z = (((1−i)^4 ((√3)+i)^7 )/((1+i(√2))^8 (−1−i(√3))^(12) ))

$$\:\mathrm{Find}\:\mathrm{modulus}\:\mathrm{and}\:\mathrm{argumen}\:\mathrm{of}\: \\ $$$$\:\mathrm{z}\:=\:\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{4}} \left(\sqrt{\mathrm{3}}+{i}\right)^{\mathrm{7}} }{\left(\mathrm{1}+{i}\sqrt{\mathrm{2}}\right)^{\mathrm{8}} \left(−\mathrm{1}−{i}\sqrt{\mathrm{3}}\right)^{\mathrm{12}} } \\ $$

Question Number 133069    Answers: 0   Comments: 4

Question Number 133103    Answers: 1   Comments: 2

Question Number 132861    Answers: 0   Comments: 0

∫_0 ^∞ ((cos(xπt))/(cosh(πx)))e^(−π^2 x) dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({x}\pi{t}\right)}{{cosh}\left(\pi{x}\right)}{e}^{−\pi^{\mathrm{2}} {x}} {dx} \\ $$

  Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com