Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 46

Question Number 135906    Answers: 1   Comments: 0

Edit: this is already fixed. Therefore this thread is closed... There′s a glitch! Whenever you backspace from a line to delete it, you′ll end up directly in front of the first thing you typed, whatever it is. Also, is there a way for this app to run in portrait orrentation on tablets? Because I can′t seem to get it to rotate to that mode. I saw in your screenshots on the Google Play page that it was possible, but I can′t get it to work. I would perfer editing in that orrentation over the landscape rotation.

$${Edit}:\:{this}\:{is}\:{already}\:{fixed}.\:{Therefore}\:{this}\:{thread}\:{is}\:{closed}... \\ $$$$ \\ $$$$\mathrm{There}'\mathrm{s}\:\mathrm{a}\:\mathrm{glitch}! \\ $$$$\mathrm{Whenever}\:\mathrm{you}\:\mathrm{backspace}\:\mathrm{from}\:\mathrm{a}\:\mathrm{line}\:\mathrm{to}\:\mathrm{delete}\:\mathrm{it},\:\mathrm{you}'\mathrm{ll}\:\mathrm{end}\:\mathrm{up}\:\mathrm{directly}\:\mathrm{in}\:\mathrm{front}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{thing}\:\mathrm{you}\:\mathrm{typed}, \\ $$$$\mathrm{whatever}\:\mathrm{it}\:\mathrm{is}. \\ $$$$ \\ $$$$\mathrm{Also},\:\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}\:\mathrm{for}\:\mathrm{this}\:\mathrm{app}\:\mathrm{to}\:\mathrm{run}\:\mathrm{in}\:\mathrm{portrait}\:\mathrm{orrentation}\:\mathrm{on}\:\mathrm{tablets}?\:\mathrm{Because}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{get}\:\mathrm{it}\:\mathrm{to}\:\mathrm{rotate} \\ $$$$\mathrm{to}\:\mathrm{that}\:\mathrm{mode}.\:\mathrm{I}\:\mathrm{saw}\:\mathrm{in}\:\mathrm{your}\:\mathrm{screenshots}\:\mathrm{on}\:\mathrm{the}\:\mathrm{Google}\:\mathrm{Play}\:\mathrm{page}\:\mathrm{that}\:\mathrm{it}\:\mathrm{was}\:\mathrm{possible},\:\mathrm{but}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{get}\:\mathrm{it}\:\mathrm{to}\:\mathrm{work}. \\ $$$$\mathrm{I}\:\mathrm{would}\:\mathrm{perfer}\:\mathrm{editing}\:\mathrm{in}\:\mathrm{that}\:\mathrm{orrentation}\:\mathrm{over}\:\mathrm{the}\:\mathrm{landscape}\:\mathrm{rotation}. \\ $$

Question Number 135884    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (H_n ^((7)) /n^2 )−(H_n ^((7)) /((n+1)^2 )) Σ_(k=1) ^n (1/k^m )=H_n ^((m))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} ^{\left(\mathrm{7}\right)} }{{n}^{\mathrm{2}} }−\frac{{H}_{{n}} ^{\left(\mathrm{7}\right)} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{{m}} }={H}_{{n}} ^{\left({m}\right)} \\ $$

Question Number 135808    Answers: 0   Comments: 0

Question Number 135798    Answers: 0   Comments: 3

Question Number 135757    Answers: 1   Comments: 4

((1.1)/2)+(((1+(1/2))1)/2^2 )+(((1+(1/2)+(1/3))2)/2^3 )+(((1+(1/2)+(1/3)+(1/4))3)/2^4 )+(((1+(1/2)+(1/3)+(1/4)+(1/5))5)/2^5 )+...

$$\frac{\mathrm{1}.\mathrm{1}}{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{2}}{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)\mathrm{3}}{\mathrm{2}^{\mathrm{4}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}\right)\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }+... \\ $$

Question Number 135653    Answers: 1   Comments: 9

Question Number 135638    Answers: 0   Comments: 0

Σ_(n=0) ^∞ ((((√5)−2)^(2n+1) )/((2n+1)^2 ))=(π^2 /(24))−(1/(12))log^2 (2+(√5))

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}−\frac{\mathrm{1}}{\mathrm{12}}{log}^{\mathrm{2}} \left(\mathrm{2}+\sqrt{\mathrm{5}}\right) \\ $$

Question Number 135432    Answers: 0   Comments: 0

Question Number 135431    Answers: 2   Comments: 0

Question Number 135366    Answers: 1   Comments: 0

∫_0 ^1 (1/( ((6x−15x^2 +20x^3 −15x^4 +6x^5 −x^6 ))^(1/6) ))dx=(π/3) Or ∫_0 ^1 (1/( ((kx−((k(k−1))/2)x^2 +((k(k−1)(k−2))/6)x^3 −...))^(1/k) ))dx=(π/(ksin((π/k))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{\mathrm{6}{x}−\mathrm{15}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{3}} −\mathrm{15}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{5}} −{x}^{\mathrm{6}} }}{dx}=\frac{\pi}{\mathrm{3}} \\ $$$${Or} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{{k}}]{{kx}−\frac{{k}\left({k}−\mathrm{1}\right)}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)}{\mathrm{6}}{x}^{\mathrm{3}} −...}}{dx}=\frac{\pi}{{ksin}\left(\frac{\pi}{{k}}\right)} \\ $$

Question Number 135335    Answers: 0   Comments: 0

Question Number 135284    Answers: 0   Comments: 3

2^x +4^x =9^x . Solve for x

$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{9}^{{x}} .\:{Solve}\:{for}\:{x} \\ $$

Question Number 135246    Answers: 0   Comments: 3

Question Number 135187    Answers: 0   Comments: 0

Question Number 135169    Answers: 0   Comments: 0

What is the remainder when x^(81) +x^(49) +x^(25) + x^9 + x is divided by x^3 +x

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\: \\ $$$$\mathrm{x}^{\mathrm{81}} +\mathrm{x}^{\mathrm{49}} +\mathrm{x}^{\mathrm{25}} +\:\mathrm{x}^{\mathrm{9}} +\:\mathrm{x}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{x}^{\mathrm{3}} +\mathrm{x}\: \\ $$

Question Number 135165    Answers: 0   Comments: 1

Solve Brachistochrone Curve Problem

$${Solve}\:{Brachistochrone}\:{Curve}\:{Problem} \\ $$

Question Number 134984    Answers: 2   Comments: 0

(1^2 /2)+(((1+(1/2))^2 )/2^2 )+(((1+(1/2)+(1/3))^2 )/2^3 )+(((1+(1/2)+(1/3)+(1/4))^2 )/2^4 )+... Find in a closed form

$$\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{4}} }+... \\ $$$$ \\ $$Find in a closed form

Question Number 134957    Answers: 0   Comments: 8

Question Number 134941    Answers: 0   Comments: 1

Question Number 134940    Answers: 0   Comments: 0

let X=R wth the usual metric. prove that the open and bounded interval A=(1,2) is an open set in R.

$${let}\:{X}=\mathbb{R}\:{wth}\:{the}\:{usual}\:{metric}.\:{prove}\:{that}\:{the}\:{open} \\ $$$${and}\:{bounded}\:{interval}\:{A}=\left(\mathrm{1},\mathrm{2}\right)\:{is}\:{an}\:{open}\:{set}\:{in}\:\mathbb{R}. \\ $$

Question Number 134915    Answers: 1   Comments: 0

Question Number 134704    Answers: 1   Comments: 0

Question Number 134657    Answers: 0   Comments: 0

(1/(πe))+(3/(2π^2 e^2 ))+((11)/(6π^3 e^3 ))+((25)/(12π^4 e^4 ))+((137)/(60π^5 e^5 ))+...=((log(π)+1−log(πe−1))/(πe−1))

$$\frac{\mathrm{1}}{\pi{e}}+\frac{\mathrm{3}}{\mathrm{2}\pi^{\mathrm{2}} {e}^{\mathrm{2}} }+\frac{\mathrm{11}}{\mathrm{6}\pi^{\mathrm{3}} {e}^{\mathrm{3}} }+\frac{\mathrm{25}}{\mathrm{12}\pi^{\mathrm{4}} {e}^{\mathrm{4}} }+\frac{\mathrm{137}}{\mathrm{60}\pi^{\mathrm{5}} {e}^{\mathrm{5}} }+...=\frac{{log}\left(\pi\right)+\mathrm{1}−{log}\left(\pi{e}−\mathrm{1}\right)}{\pi{e}−\mathrm{1}} \\ $$

Question Number 134530    Answers: 1   Comments: 0

The speed of a train is reduced from 80km/hr to 40km/hr in a distance of 500m on applying the brakes. (i) How much further will the train travels before coming to rest. (ii) Assuming the retardation remains constant, how long will it take to bring the train to rest after the application of the brakes?

$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{a}\:\mathrm{train}\:\mathrm{is}\:\mathrm{reduced}\:\mathrm{from}\:\:\mathrm{80km}/\mathrm{hr}\:\:\mathrm{to}\:\:\mathrm{40km}/\mathrm{hr}\:\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\:\mathrm{500m}\:\:\mathrm{on}\:\mathrm{applying}\:\mathrm{the}\:\mathrm{brakes}. \\ $$$$\left(\mathrm{i}\right)\:\:\mathrm{How}\:\mathrm{much}\:\mathrm{further}\:\mathrm{will}\:\mathrm{the}\:\mathrm{train}\:\mathrm{travels}\:\mathrm{before}\:\mathrm{coming}\:\mathrm{to}\:\mathrm{rest}. \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{Assuming}\:\mathrm{the}\:\mathrm{retardation}\:\mathrm{remains}\:\mathrm{constant},\:\mathrm{how}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it} \\ $$$$\mathrm{take}\:\mathrm{to}\:\mathrm{bring}\:\mathrm{the}\:\mathrm{train}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{after}\:\mathrm{the}\:\mathrm{application}\:\mathrm{of}\:\mathrm{the}\:\mathrm{brakes}? \\ $$

Question Number 134453    Answers: 0   Comments: 0

Question Number 134439    Answers: 1   Comments: 0

sin1−((sin2)/2)+((sin3)/3)−((sin4)/4)+...=(1/2)

$${sin}\mathrm{1}−\frac{{sin}\mathrm{2}}{\mathrm{2}}+\frac{{sin}\mathrm{3}}{\mathrm{3}}−\frac{{sin}\mathrm{4}}{\mathrm{4}}+...=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

  Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com