Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 44

Question Number 136757    Answers: 1   Comments: 0

1+((1/2))^2 (1/(2.1!))+(((1.3)/2^2 ))^2 (1/(2^2 .2!))+(((1.3.5)/2^3 )).(1/(2^3 .3!))+....=(((Γ((1/4)))/((2π^3 )^(1/4) )))^2

$$\mathrm{1}+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}.\mathrm{1}!}+\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }\right)^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} .\mathrm{2}!}+\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }\right).\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}!}+....=\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\left(\mathrm{2}\pi^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{4}} }\right)^{\mathrm{2}} \\ $$

Question Number 136661    Answers: 0   Comments: 0

∫_0 ^1 (1−x)^(−(7/8)) (1+x)^(−(1/(16))) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right)^{−\frac{\mathrm{7}}{\mathrm{8}}} \left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{16}}} {dx} \\ $$

Question Number 136593    Answers: 1   Comments: 0

Question Number 136520    Answers: 3   Comments: 1

Question Number 136519    Answers: 1   Comments: 0

1−((1/2))^(2k) +(((1.3)/(2.4)))^(2k) −(((1.3.5)/(2.4.6)))^(2k) +(((1.3.5.7)/(2.4.6.8)))^(2k) −.... Find the general form

$$\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}{k}} +\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}.\mathrm{4}}\right)^{\mathrm{2}{k}} −\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)^{\mathrm{2}{k}} +\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{2}.\mathrm{4}.\mathrm{6}.\mathrm{8}}\right)^{\mathrm{2}{k}} −.... \\ $$$${Find}\:{the}\:{general}\:{form} \\ $$

Question Number 136420    Answers: 2   Comments: 0

Σ_(n=1) ^∞ ((sin(2n+1)θ)/((2n+1)^2 ))=(θ/2)log(2)+sinθ((log(sinθ))/4) _2 F_1 ((1/2),(1/2);(3/2);sin^2 θ)+((sinθ)/(16)) _2 F_1 ((1/2),(1/2),(1/2);(3/2);(3/2);sin^2 θ) Prove or disprove 0<θ<π

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\theta}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\theta}{\mathrm{2}}{log}\left(\mathrm{2}\right)+{sin}\theta\frac{{log}\left({sin}\theta\right)}{\mathrm{4}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};{sin}^{\mathrm{2}} \theta\right)+\frac{{sin}\theta}{\mathrm{16}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};{sin}^{\mathrm{2}} \theta\right) \\ $$$${Prove}\:{or}\:{disprove}\:\:\:\:\:\mathrm{0}<\theta<\pi \\ $$

Question Number 136105    Answers: 0   Comments: 4

Question Number 136104    Answers: 0   Comments: 0

((cos(1+(√((43)/3)))π)/1^2 )+((cos(1+(√((43)/3)))2π)/2^2 )+((cos(1+(√((43)/3)))3π)/3^2 )+...=aπ Find a

$$\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\pi}{\mathrm{1}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{2}\pi}{\mathrm{2}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{3}\pi}{\mathrm{3}^{\mathrm{2}} }+...={a}\pi \\ $$$${Find}\:{a} \\ $$

Question Number 136070    Answers: 1   Comments: 0

((sin((√2)))/1^3 )+((sin(2(√2)))/2^3 )+((sin(3(√2)))/3^3 )+...=((π^b +1)/( a(√b)))−(π/b) Find a−b

$$\frac{{sin}\left(\sqrt{\mathrm{2}}\right)}{\mathrm{1}^{\mathrm{3}} }+\frac{{sin}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)}{\mathrm{2}^{\mathrm{3}} }+\frac{{sin}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)}{\mathrm{3}^{\mathrm{3}} }+...=\frac{\pi^{{b}} +\mathrm{1}}{\:{a}\sqrt{{b}}}−\frac{\pi}{{b}} \\ $$$${Find}\:{a}−{b} \\ $$

Question Number 136110    Answers: 0   Comments: 1

An engine is pumping water from a well 25m deep. It discharges 0.4 m^3 of water each second with a velocity of 12 ms^(−1) . Find the power of the pump given that the density of water is 1000 kg m^(−3) . take g = 10 ms^(−2)

$$\mathrm{An}\:\mathrm{engine}\:\mathrm{is}\:\mathrm{pumping}\:\mathrm{water}\:\mathrm{from}\:\mathrm{a}\:\mathrm{well}\:\mathrm{25m}\:\mathrm{deep}.\:\mathrm{It}\:\mathrm{discharges} \\ $$$$\mathrm{0}.\mathrm{4}\:\mathrm{m}^{\mathrm{3}} \:\mathrm{of}\:\mathrm{water}\:\mathrm{each}\:\mathrm{second}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{12}\:\mathrm{ms}^{−\mathrm{1}} .\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{power}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pump}\:\mathrm{given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{water}\:\mathrm{is}\:\mathrm{1000}\:\mathrm{kg}\:\mathrm{m}^{−\mathrm{3}} . \\ $$$$\mathrm{take}\:\boldsymbol{\mathrm{g}}\:=\:\mathrm{10}\:\mathrm{ms}^{−\mathrm{2}} \\ $$

Question Number 135976    Answers: 1   Comments: 0

Question Number 135906    Answers: 1   Comments: 0

Edit: this is already fixed. Therefore this thread is closed... There′s a glitch! Whenever you backspace from a line to delete it, you′ll end up directly in front of the first thing you typed, whatever it is. Also, is there a way for this app to run in portrait orrentation on tablets? Because I can′t seem to get it to rotate to that mode. I saw in your screenshots on the Google Play page that it was possible, but I can′t get it to work. I would perfer editing in that orrentation over the landscape rotation.

$${Edit}:\:{this}\:{is}\:{already}\:{fixed}.\:{Therefore}\:{this}\:{thread}\:{is}\:{closed}... \\ $$$$ \\ $$$$\mathrm{There}'\mathrm{s}\:\mathrm{a}\:\mathrm{glitch}! \\ $$$$\mathrm{Whenever}\:\mathrm{you}\:\mathrm{backspace}\:\mathrm{from}\:\mathrm{a}\:\mathrm{line}\:\mathrm{to}\:\mathrm{delete}\:\mathrm{it},\:\mathrm{you}'\mathrm{ll}\:\mathrm{end}\:\mathrm{up}\:\mathrm{directly}\:\mathrm{in}\:\mathrm{front}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{thing}\:\mathrm{you}\:\mathrm{typed}, \\ $$$$\mathrm{whatever}\:\mathrm{it}\:\mathrm{is}. \\ $$$$ \\ $$$$\mathrm{Also},\:\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}\:\mathrm{for}\:\mathrm{this}\:\mathrm{app}\:\mathrm{to}\:\mathrm{run}\:\mathrm{in}\:\mathrm{portrait}\:\mathrm{orrentation}\:\mathrm{on}\:\mathrm{tablets}?\:\mathrm{Because}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{get}\:\mathrm{it}\:\mathrm{to}\:\mathrm{rotate} \\ $$$$\mathrm{to}\:\mathrm{that}\:\mathrm{mode}.\:\mathrm{I}\:\mathrm{saw}\:\mathrm{in}\:\mathrm{your}\:\mathrm{screenshots}\:\mathrm{on}\:\mathrm{the}\:\mathrm{Google}\:\mathrm{Play}\:\mathrm{page}\:\mathrm{that}\:\mathrm{it}\:\mathrm{was}\:\mathrm{possible},\:\mathrm{but}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{get}\:\mathrm{it}\:\mathrm{to}\:\mathrm{work}. \\ $$$$\mathrm{I}\:\mathrm{would}\:\mathrm{perfer}\:\mathrm{editing}\:\mathrm{in}\:\mathrm{that}\:\mathrm{orrentation}\:\mathrm{over}\:\mathrm{the}\:\mathrm{landscape}\:\mathrm{rotation}. \\ $$

Question Number 135884    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (H_n ^((7)) /n^2 )−(H_n ^((7)) /((n+1)^2 )) Σ_(k=1) ^n (1/k^m )=H_n ^((m))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} ^{\left(\mathrm{7}\right)} }{{n}^{\mathrm{2}} }−\frac{{H}_{{n}} ^{\left(\mathrm{7}\right)} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{{m}} }={H}_{{n}} ^{\left({m}\right)} \\ $$

Question Number 135808    Answers: 0   Comments: 0

Question Number 135798    Answers: 0   Comments: 3

Question Number 135757    Answers: 1   Comments: 4

((1.1)/2)+(((1+(1/2))1)/2^2 )+(((1+(1/2)+(1/3))2)/2^3 )+(((1+(1/2)+(1/3)+(1/4))3)/2^4 )+(((1+(1/2)+(1/3)+(1/4)+(1/5))5)/2^5 )+...

$$\frac{\mathrm{1}.\mathrm{1}}{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{2}}{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)\mathrm{3}}{\mathrm{2}^{\mathrm{4}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}\right)\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }+... \\ $$

Question Number 135653    Answers: 1   Comments: 9

Question Number 135638    Answers: 0   Comments: 0

Σ_(n=0) ^∞ ((((√5)−2)^(2n+1) )/((2n+1)^2 ))=(π^2 /(24))−(1/(12))log^2 (2+(√5))

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}−\frac{\mathrm{1}}{\mathrm{12}}{log}^{\mathrm{2}} \left(\mathrm{2}+\sqrt{\mathrm{5}}\right) \\ $$

Question Number 135432    Answers: 0   Comments: 0

Question Number 135431    Answers: 2   Comments: 0

Question Number 135366    Answers: 1   Comments: 0

∫_0 ^1 (1/( ((6x−15x^2 +20x^3 −15x^4 +6x^5 −x^6 ))^(1/6) ))dx=(π/3) Or ∫_0 ^1 (1/( ((kx−((k(k−1))/2)x^2 +((k(k−1)(k−2))/6)x^3 −...))^(1/k) ))dx=(π/(ksin((π/k))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{\mathrm{6}{x}−\mathrm{15}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{3}} −\mathrm{15}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{5}} −{x}^{\mathrm{6}} }}{dx}=\frac{\pi}{\mathrm{3}} \\ $$$${Or} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{{k}}]{{kx}−\frac{{k}\left({k}−\mathrm{1}\right)}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)}{\mathrm{6}}{x}^{\mathrm{3}} −...}}{dx}=\frac{\pi}{{ksin}\left(\frac{\pi}{{k}}\right)} \\ $$

Question Number 135335    Answers: 0   Comments: 0

Question Number 135284    Answers: 0   Comments: 3

2^x +4^x =9^x . Solve for x

$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{9}^{{x}} .\:{Solve}\:{for}\:{x} \\ $$

Question Number 135246    Answers: 0   Comments: 3

Question Number 135187    Answers: 0   Comments: 0

Question Number 135169    Answers: 0   Comments: 0

What is the remainder when x^(81) +x^(49) +x^(25) + x^9 + x is divided by x^3 +x

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\: \\ $$$$\mathrm{x}^{\mathrm{81}} +\mathrm{x}^{\mathrm{49}} +\mathrm{x}^{\mathrm{25}} +\:\mathrm{x}^{\mathrm{9}} +\:\mathrm{x}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{x}^{\mathrm{3}} +\mathrm{x}\: \\ $$

  Pg 39      Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com