Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 32

Question Number 167977    Answers: 1   Comments: 0

Prove that I_n =(1/2^(n+1) )∫_π ^(4nπ) xcos (x/2)dx=((2−π)/2^(np) )

$${Prove}\:{that} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }\int_{\pi} ^{\mathrm{4}{n}\pi} {x}\mathrm{cos}\:\frac{{x}}{\mathrm{2}}{dx}=\frac{\mathrm{2}−\pi}{\mathrm{2}^{{np}} } \\ $$

Question Number 167963    Answers: 0   Comments: 0

show that_β_(1 =( nΣxy−ΣxΣy)/(nΣx^2 −(Σx)^2 )=Σxy/Σ(xy)^(2 ) where x=(x−x^− ) and y=(y−y^− ) )

$$\:{show}\:{that}_{\beta_{\mathrm{1}\:=\left(\:{n}\Sigma{xy}−\Sigma{x}\Sigma{y}\right)/\left({n}\Sigma{x}^{\mathrm{2}} −\left(\Sigma{x}\right)^{\mathrm{2}} \right)=\Sigma{xy}/\Sigma\left({xy}\right)^{\mathrm{2}\:} \:\:\:\:\:\:\:{where}\:{x}=\left({x}−\overset{−} {{x}}\right)\:{and}\:{y}=\left({y}−\overset{−} {{y}}\right)\:\:} } \: \\ $$$$ \\ $$

Question Number 167928    Answers: 1   Comments: 0

Show that ∣1−i∣^x =2^x has no nonzero integral solution

$${Show}\:{that}\:\mid\mathrm{1}−{i}\mid^{{x}} =\mathrm{2}^{{x}} \:{has}\:{no}\:{nonzero}\:{integral}\:{solution}\: \\ $$

Question Number 167882    Answers: 2   Comments: 0

Calculate I=∫(1/x)((√((1−x)/(1+x))))dx Indication poser t=(√((1−x)/(1+x)))

$${Calculate} \\ $$$${I}=\int\frac{\mathrm{1}}{{x}}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right){dx} \\ $$$${Indication}\:{poser}\:{t}=\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}} \\ $$

Question Number 167773    Answers: 2   Comments: 0

Calculate ∫((xtan x)/(cos^4 x))dx

$${Calculate} \\ $$$$\int\frac{{x}\mathrm{tan}\:{x}}{\mathrm{cos}\:^{\mathrm{4}} {x}}{dx} \\ $$

Question Number 167757    Answers: 1   Comments: 1

Calculate ∫sec^2 xsec xdx

$${Calculate} \\ $$$$\int\mathrm{sec}\:^{\mathrm{2}} {x}\mathrm{sec}\:{xdx} \\ $$

Question Number 167740    Answers: 0   Comments: 0

I_n =∫_0 ^(π/4) (1/(cos^(2n+1) x))dx Prove by parts that: 2nI_n =(2n−1)I_(n−1) +(2^n /( (√2)))

$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}{n}+\mathrm{1}} {x}}{dx} \\ $$$${Prove}\:{by}\:{parts}\:{that}: \\ $$$$\mathrm{2}{nI}_{{n}} =\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}−\mathrm{1}} +\frac{\mathrm{2}^{{n}} }{\:\sqrt{\mathrm{2}}} \\ $$

Question Number 167730    Answers: 1   Comments: 2

Question Number 167496    Answers: 0   Comments: 0

Question Number 167468    Answers: 1   Comments: 0

Question Number 168097    Answers: 0   Comments: 0

Question Number 167372    Answers: 1   Comments: 0

Calculate ∫_(−2) ^2 (∣x∣+x)e^(−∣x∣) dx

$${Calculate}\: \\ $$$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mid{x}\mid+{x}\right){e}^{−\mid{x}\mid} {dx} \\ $$

Question Number 167330    Answers: 2   Comments: 0

Calculate ∫(1/(x+(√(x^2 +x+1))))dx

$${Calculate} \\ $$$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$

Question Number 167275    Answers: 0   Comments: 0

Question Number 167200    Answers: 1   Comments: 0

Question Number 167122    Answers: 0   Comments: 0

Question Number 166573    Answers: 1   Comments: 1

Question Number 166346    Answers: 1   Comments: 1

∫(dx/(1+(√x)+(√(1+x))))

$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$

Question Number 166301    Answers: 2   Comments: 0

∫(x/( (√(1+x^2 +(√((1+x^2 )^3 ))))))dx

$$\int\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}{dx} \\ $$

Question Number 165816    Answers: 1   Comments: 0

The GCF of two numbers is 8 and theirLCM is 360.if one of the number is72 find the other number.

$$\mathrm{The}\:\mathrm{GCF}\:\mathrm{of}\:\mathrm{two}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{8}\:\mathrm{and}\: \\ $$$$\mathrm{theirLCM}\:\mathrm{is}\:\mathrm{360}.\mathrm{if}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}\: \\ $$$$\mathrm{is72}\:\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{number}. \\ $$

Question Number 165893    Answers: 1   Comments: 1

Question Number 165567    Answers: 0   Comments: 0

Question Number 165561    Answers: 2   Comments: 0

I=∫(dx/(x^8 +x^6 )) J=∫((1−x^7 )/(x(1+x^7 )))dx Calculate I and J

$${I}=\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{6}} } \\ $$$${J}=\int\frac{\mathrm{1}−{x}^{\mathrm{7}} }{{x}\left(\mathrm{1}+{x}^{\mathrm{7}} \right)}{dx} \\ $$$${Calculate}\:{I}\:{and}\:{J} \\ $$

Question Number 165528    Answers: 1   Comments: 1

∫(1/(x+(√(x^2 +x+1))))dx

$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$

Question Number 165392    Answers: 2   Comments: 0

lim_(x→+∞) ((e^(1/x) −cos (1/x))/(1−(√(1−(1/x^2 ))))) lim_(x→a) ((x^x −a^a )/(x−a))

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{e}^{\frac{\mathrm{1}}{{x}}} −\mathrm{cos}\:\frac{\mathrm{1}}{{x}}}{\mathrm{1}−\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{{x}} −{a}^{{a}} }{{x}−{a}} \\ $$

Question Number 165372    Answers: 1   Comments: 0

lim_(x→+∞) ln (1+2^x )ln (1+(3/x))

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}ln}\:\left(\mathrm{1}+\mathrm{2}^{{x}} \right)\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right) \\ $$

  Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32      Pg 33      Pg 34      Pg 35      Pg 36   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com