Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 32
Question Number 168613 Answers: 3 Comments: 1
$${Resolve}\: \\ $$$$\left.\mathrm{1}\right)\:{x}\frac{{dy}}{{dx}}−{y}={y}^{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:\left({x}−{y}\right){ydx}−{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:\left(\mathrm{2}{x}−{y}\right){dx}+\left(\mathrm{4}{x}−\mathrm{2}{y}+\mathrm{3}\right){dy}=\mathrm{0} \\ $$
Question Number 168608 Answers: 2 Comments: 0
Question Number 168549 Answers: 1 Comments: 0
$${Resolve} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} {y}^{''} −\mathrm{3}\left({x}−\mathrm{2}\right){y}'+{y}={x} \\ $$
Question Number 168548 Answers: 1 Comments: 0
Question Number 168546 Answers: 0 Comments: 0
Question Number 168538 Answers: 2 Comments: 0
Question Number 168537 Answers: 2 Comments: 0
$$\mathrm{4}^{\mathrm{61}} +\mathrm{4}^{\mathrm{62}} +\mathrm{4}^{\mathrm{63}} +\mathrm{4}^{\mathrm{64}\:} \:{is}\:{divisible}\:{by} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{17}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{3} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{11}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right)\:\mathrm{13} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168527 Answers: 1 Comments: 0
$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$${x}^{\mathrm{3}} +\mathrm{64}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168525 Answers: 1 Comments: 0
$${Resolve} \\ $$$${x}^{\mathrm{2}} {y}^{''} +{xy}^{'} +{y}=\mathrm{1} \\ $$
Question Number 168518 Answers: 1 Comments: 1
$${R}\acute {{e}soudre}\:{l}'\acute {{e}quation}\:{au}\mathrm{x}\:\mathrm{differentiel}{les} \\ $$$$\mathrm{totales} \\ $$$$\mathrm{2}{xydx}+\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$
Question Number 168492 Answers: 0 Comments: 3
Question Number 168421 Answers: 0 Comments: 0
$${Calculate}\:{the}\:{compound}\:{interest}\: \\ $$$${on}\:{the}\:{sum}\:{of}\:#\mathrm{400}\:\mathrm{000}\: \\ $$$${for}\:\mathrm{2}{years}\:{at}\:{the}\:{rate}\:{of} \\ $$$$\mathrm{10\%}\:. \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168399 Answers: 1 Comments: 0
$${solve} \\ $$$${z}^{\frac{\mathrm{1}}{\mathrm{4}}} −{i}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168280 Answers: 1 Comments: 0
$${Wath}\:{is}\:{your}\:{favourite}\:{formula}\:??? \\ $$
Question Number 168278 Answers: 1 Comments: 2
$$\:\:\:\:\:\frac{{log}_{\mathrm{3}} \left(\mathrm{12}\right)}{{log}_{\mathrm{36}} \left(\mathrm{3}\right)}−\frac{{log}_{\mathrm{3}} \left(\mathrm{4}\right)}{{log}_{\mathrm{108}} \left(\mathrm{3}\right)}\:=\:{x} \\ $$$$\:\:\:\:\:{x}\:=\: \\ $$
Question Number 168274 Answers: 1 Comments: 0
Question Number 168264 Answers: 1 Comments: 0
Question Number 168247 Answers: 2 Comments: 0
$${Solve}\:{for}\:{x} \\ $$$$\frac{\mathrm{8}^{{x}} +\mathrm{27}^{{x}} }{\mathrm{12}^{{x}} +\mathrm{18}^{{x}} }=\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168187 Answers: 2 Comments: 0
$${Prove}\:{that}\::\: \\ $$$${sinh}^{−\mathrm{1}} {tan}\theta\:=\:{log}\:{tan}\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168185 Answers: 0 Comments: 0
$${Separate}\:{cos}^{−\mathrm{1}} {e}^{{i}\theta} \:{into}\: \\ $$$${real}\:{and}\:{imaginary}\:{parts}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168118 Answers: 1 Comments: 0
$${If}\:{tan}\left(\theta+{i}\phi\right)={cos}\alpha+{isin}\alpha,\: \\ $$$${prove}\:{that}\::\:\theta=\frac{{n}\Pi}{\mathrm{2}}+\frac{\Pi}{\mathrm{4}}\:{and}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}{log}\:{tan}\left(\frac{\Pi}{\mathrm{4}}+\frac{\alpha}{\mathrm{2}}\right) \\ $$
Question Number 167978 Answers: 0 Comments: 0
$$\begin{pmatrix}{\mathrm{3}\:\:\:\:\:\mathrm{2}\:}\\{\mathrm{4}\:\:\:\:\:\:\mathrm{5}}\end{pmatrix}\:\:\left[{A}\right]\:=\begin{vmatrix}{\mathrm{3}\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{4}\:\:\:\:\:\:\mathrm{5}}\end{vmatrix} \\ $$
Question Number 167977 Answers: 1 Comments: 0
$${Prove}\:{that} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }\int_{\pi} ^{\mathrm{4}{n}\pi} {x}\mathrm{cos}\:\frac{{x}}{\mathrm{2}}{dx}=\frac{\mathrm{2}−\pi}{\mathrm{2}^{{np}} } \\ $$
Question Number 167963 Answers: 0 Comments: 0
$$\:{show}\:{that}_{\beta_{\mathrm{1}\:=\left(\:{n}\Sigma{xy}−\Sigma{x}\Sigma{y}\right)/\left({n}\Sigma{x}^{\mathrm{2}} −\left(\Sigma{x}\right)^{\mathrm{2}} \right)=\Sigma{xy}/\Sigma\left({xy}\right)^{\mathrm{2}\:} \:\:\:\:\:\:\:{where}\:{x}=\left({x}−\overset{−} {{x}}\right)\:{and}\:{y}=\left({y}−\overset{−} {{y}}\right)\:\:} } \: \\ $$$$ \\ $$
Question Number 167928 Answers: 1 Comments: 0
$${Show}\:{that}\:\mid\mathrm{1}−{i}\mid^{{x}} =\mathrm{2}^{{x}} \:{has}\:{no}\:{nonzero}\:{integral}\:{solution}\: \\ $$
Question Number 167882 Answers: 2 Comments: 0
$${Calculate} \\ $$$${I}=\int\frac{\mathrm{1}}{{x}}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right){dx} \\ $$$${Indication}\:{poser}\:{t}=\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}} \\ $$
Pg 27 Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33 Pg 34 Pg 35 Pg 36
Terms of Service
Privacy Policy
Contact: info@tinkutara.com