Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 28

Question Number 171718    Answers: 0   Comments: 0

Question Number 171667    Answers: 1   Comments: 0

Question Number 171666    Answers: 0   Comments: 1

Question Number 171665    Answers: 1   Comments: 0

Ω=∫_0 ^1 Log(((Log^2 (x))/x^(x^5 −x^4 +x^3 −x^2 +x−1) ))dx Anyone?

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {Log}\left(\frac{{Log}^{\mathrm{2}} \left({x}\right)}{{x}^{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{1}} }\right){dx} \\ $$$$ \\ $$$${Anyone}? \\ $$

Question Number 171627    Answers: 0   Comments: 5

A mass 10kg is placed at the foot of an inclined plane 13m long, whose upper end is 5m higher than the foot. The mass is connected by a light inextensible string, passing over a smooth pulley at the top of the plane, to another mass 10kg which hangs level with the top of the plane, 5m above the floor. If the coefficient of friction between the first mass and then plane is ½ and the system is released from rest, find the acceleration and tension In the string. [Take g = 9.8m/s²]

A mass 10kg is placed at the foot of an inclined plane 13m long, whose upper end is 5m higher than the foot. The mass is connected by a light inextensible string, passing over a smooth pulley at the top of the plane, to another mass 10kg which hangs level with the top of the plane, 5m above the floor. If the coefficient of friction between the first mass and then plane is ½ and the system is released from rest, find the acceleration and tension In the string. [Take g = 9.8m/s²]

Question Number 171622    Answers: 0   Comments: 0

Question Number 171614    Answers: 0   Comments: 11

A particle is moving along a straight line such that it's position from a fixed point is S = ( 12 - 15t² + 5t³ )m where t is in seconds. Determine: A. Total distance travelled by the particle from t = 1sec to t = 3sec B. The average speed of the particle during this time.

A particle is moving along a straight line such that it's position from a fixed point is S = ( 12 - 15t² + 5t³ )m where t is in seconds. Determine: A. Total distance travelled by the particle from t = 1sec to t = 3sec B. The average speed of the particle during this time.

Question Number 171599    Answers: 0   Comments: 0

Ω=∫_0 ^1 Log(((Log^2 (x))/x^(x^5 −x^4 +x^3 −x^2 +x−1) ))dx Mastermind

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {Log}\left(\frac{{Log}^{\mathrm{2}} \left({x}\right)}{{x}^{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{1}} }\right){dx} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171575    Answers: 0   Comments: 3

Question Number 171518    Answers: 0   Comments: 2

Question Number 171502    Answers: 0   Comments: 1

Solve (dy/dx)(xcos y+asin 2y)=−1 (dy/dx)=(((y+2)/(x+y−1)))^2

$${Solve} \\ $$$$\frac{{dy}}{{dx}}\left({x}\mathrm{cos}\:{y}+{a}\mathrm{sin}\:\mathrm{2}{y}\right)=−\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\left(\frac{{y}+\mathrm{2}}{{x}+{y}−\mathrm{1}}\right)^{\mathrm{2}} \\ $$

Question Number 171493    Answers: 1   Comments: 0

Question Number 171491    Answers: 0   Comments: 0

Question Number 171490    Answers: 0   Comments: 0

Question Number 171475    Answers: 1   Comments: 0

Question Number 171472    Answers: 0   Comments: 0

lim_(a→∞) Σ_(n=1) ^a ((e^(in) .ln∣(1/x)∣)/(πn^2 )).tan^(−1) (n(√π)) Mastermind

$${li}\underset{{a}\rightarrow\infty} {{m}}\:\underset{{n}=\mathrm{1}} {\overset{{a}} {\sum}}\frac{{e}^{{in}} .{ln}\mid\frac{\mathrm{1}}{{x}}\mid}{\pi{n}^{\mathrm{2}} }.{tan}^{−\mathrm{1}} \left({n}\sqrt{\pi}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171437    Answers: 2   Comments: 0

make r the subject of the formula y=(((pr)/m) − (p^3 /1))^(−3/2) find r if y=−8 , m=−1, p=3

$$\mathrm{make}\:\boldsymbol{\mathrm{r}}\:\:\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{y}}=\left(\frac{\boldsymbol{\mathrm{pr}}}{\boldsymbol{\mathrm{m}}}\:\:−\:\frac{\boldsymbol{\mathrm{p}}^{\mathrm{3}} }{\mathrm{1}}\right)^{−\mathrm{3}/\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{r}}\:\mathrm{if}\:\mathrm{y}=−\mathrm{8}\:\:\:,\:\:\mathrm{m}=−\mathrm{1},\:\:\mathrm{p}=\mathrm{3} \\ $$

Question Number 171332    Answers: 0   Comments: 2

A bicycle has a constant velocity of 10 m/s. A person starts from rest and runs to catch up to the bicycle in 30 s. What is the acceleration of the person?

A bicycle has a constant velocity of 10 m/s. A person starts from rest and runs to catch up to the bicycle in 30 s. What is the acceleration of the person?

Question Number 171314    Answers: 1   Comments: 0

If C_r , C_s are cyclic groups such that g.c.d(r,s)=1, then show that C_r ×C_s is a cyclic group. Mastermind

$${If}\:{C}_{{r}} ,\:{C}_{{s}} \:{are}\:{cyclic}\:{groups}\:{such}\:{that} \\ $$$${g}.{c}.{d}\left({r},{s}\right)=\mathrm{1},\:{then}\:{show}\:{that}\:{C}_{{r}} ×{C}_{{s}} \:{is} \\ $$$${a}\:{cyclic}\:{group}. \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171179    Answers: 1   Comments: 0

Question Number 171161    Answers: 1   Comments: 0

Question Number 171153    Answers: 1   Comments: 0

An aeroplane covers a certain distance at a speed of 240kmph in 5 hours. to cover the same distance in 1(2/3) hrs, it must travel at a speed of: A) 300kmph B) 360kmph C) 600kmph D) 700kmph Mastermind

$${An}\:{aeroplane}\:{covers}\:{a}\:{certain}\:{distance} \\ $$$${at}\:{a}\:{speed}\:{of}\:\mathrm{240}{kmph}\:{in}\:\mathrm{5}\:{hours}. \\ $$$${to}\:{cover}\:{the}\:{same}\:{distance}\:{in}\:\mathrm{1}\frac{\mathrm{2}}{\mathrm{3}}\:{hrs}, \\ $$$${it}\:{must}\:{travel}\:{at}\:{a}\:{speed}\:{of}: \\ $$$$\left.{A}\right)\:\mathrm{300}{kmph} \\ $$$$\left.{B}\right)\:\mathrm{360}{kmph} \\ $$$$\left.{C}\right)\:\mathrm{600}{kmph} \\ $$$$\left.{D}\right)\:\mathrm{700}{kmph} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171152    Answers: 1   Comments: 0

The average ages of three person is 27 years. Their ages are in the propor tion of 1:3:5. What is the age in years of the youngest one among them? Mastermind

$${The}\:{average}\:{ages}\:{of}\:{three}\:{person}\:{is} \\ $$$$\mathrm{27}\:{years}.\:{Their}\:{ages}\:{are}\:{in}\:{the}\:{propor} \\ $$$${tion}\:{of}\:\mathrm{1}:\mathrm{3}:\mathrm{5}.\:{What}\:{is}\:{the}\:{age}\:{in}\:{years} \\ $$$${of}\:{the}\:{youngest}\:{one}\:{among}\:{them}? \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171107    Answers: 0   Comments: 0

Please help lim_(x→−∞) (x−1)e^(x−1) −1=? lim_(x→+∞) (x−1)e^(x−1) −1=? g(x)=(x−1)e^(x−1) −1 g(x)′=?

$${Please}\:{help} \\ $$$${li}\underset{{x}\rightarrow−\infty} {{m}}\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1}=? \\ $$$${li}\underset{{x}\rightarrow+\infty} {{m}}\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1}=? \\ $$$${g}\left({x}\right)=\left({x}−\mathrm{1}\right){e}^{{x}−\mathrm{1}} −\mathrm{1} \\ $$$${g}\left({x}\right)'=? \\ $$$$ \\ $$

Question Number 171094    Answers: 0   Comments: 0

prove that: 𝛀=Σ_(n=0) ^∞ ((((n!)^2 )/((2n)!)))^2 (2^(4n) /((2n+1)^3 ))=^? (7/2)𝛇(3)−πG G−Catalan′s constant

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}: \\ $$$$\boldsymbol{\Omega}=\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\left(\boldsymbol{\mathrm{n}}!\right)^{\mathrm{2}} }{\left(\mathrm{2}\boldsymbol{\mathrm{n}}\right)!}\right)^{\mathrm{2}} \frac{\mathrm{2}^{\mathrm{4}\boldsymbol{\mathrm{n}}} }{\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} }\overset{?} {=}\frac{\mathrm{7}}{\mathrm{2}}\boldsymbol{\zeta}\left(\mathrm{3}\right)−\pi\boldsymbol{\mathrm{G}} \\ $$$$\boldsymbol{\mathrm{G}}−\boldsymbol{\mathrm{Catalan}}'\boldsymbol{\mathrm{s}}\:\:\boldsymbol{\mathrm{constant}} \\ $$

Question Number 171032    Answers: 1   Comments: 0

Find the domain and range of the function, f(x)=((x^2 +2)/(2x+1)) Mastermind

$${Find}\:{the}\:{domain}\:{and}\:{range}\:{of}\:{the} \\ $$$${function},\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$ \\ $$$${Mastermind} \\ $$

  Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com