Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 24

Question Number 177179    Answers: 1   Comments: 1

If a number is 20% more the other, how much percent is the second number less than the first. please help!

$$\mathrm{If}\:\mathrm{a}\:\mathrm{number}\:\mathrm{is}\:\mathrm{20\%}\:\mathrm{more}\:\mathrm{the}\:\mathrm{other},\:\mathrm{how} \\ $$$$\mathrm{much}\:\mathrm{percent}\:\mathrm{is}\:\mathrm{the}\:\mathrm{second}\:\mathrm{number} \\ $$$$\mathrm{less}\:\mathrm{than}\:\mathrm{the}\:\mathrm{first}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}! \\ $$

Question Number 177068    Answers: 1   Comments: 0

Let a,b,c be real numbers such that: a+b+c=0. Prove that: ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))≤0

$${Let}\:{a},{b},{c}\:{be}\:{real}\:{numbers}\:{such}\:{that}: \\ $$$${a}+{b}+{c}=\mathrm{0}.\:{Prove}\:{that}: \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}+\frac{\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} }{\mathrm{27}}\leqslant\mathrm{0} \\ $$

Question Number 176610    Answers: 1   Comments: 0

Question Number 176607    Answers: 1   Comments: 0

Question Number 176440    Answers: 0   Comments: 0

Question Number 176424    Answers: 0   Comments: 0

Using perseval′s Identity Evaluate : ∫_0 ^∞ (((1−cosx)/x))^2 dx Mastermind

$$\mathrm{Using}\:\mathrm{perseval}'\mathrm{s}\:\mathrm{Identity} \\ $$$$\mathrm{Evaluate}\::\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 176360    Answers: 0   Comments: 0

Question Number 176132    Answers: 0   Comments: 0

Question Number 176098    Answers: 1   Comments: 0

The deviations of a set of numbers from 12 are 3, −2, 1, 0, −1, 4, 0, 1 and 2. Calculate the mean and standard deviation of the numbers.

$$\mathrm{The}\:\mathrm{deviations}\:\mathrm{of}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{numbers} \\ $$$$\mathrm{from}\:\mathrm{12}\:\mathrm{are}\: \\ $$$$\:\:\:\:\:\mathrm{3},\:−\mathrm{2},\:\mathrm{1},\:\mathrm{0},\:−\mathrm{1},\:\mathrm{4},\:\mathrm{0},\:\mathrm{1}\:\mathrm{and}\:\mathrm{2}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{and}\:\mathrm{standard}\: \\ $$$$\mathrm{deviation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}. \\ $$

Question Number 176094    Answers: 0   Comments: 0

Question Number 176022    Answers: 0   Comments: 0

Question Number 176005    Answers: 0   Comments: 2

Question Number 175976    Answers: 1   Comments: 1

Question Number 175954    Answers: 0   Comments: 0

Question Number 175953    Answers: 1   Comments: 0

Question Number 175925    Answers: 1   Comments: 1

1^x +6^x +8^x =9^x find x ? Mastermind

$$\mathrm{1}^{\mathrm{x}} +\mathrm{6}^{\mathrm{x}} +\mathrm{8}^{\mathrm{x}} =\mathrm{9}^{\mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{x}\:? \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 175888    Answers: 1   Comments: 0

Solve the differential equation (dy/dx)=((1+y^2 )/(y(1−x^2 )))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }{\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)} \\ $$

Question Number 175746    Answers: 1   Comments: 0

Solve the differential equation 2(2xy+4y−3)dx+(x+2)^2 dy=0 Mastermind

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{2}\left(\mathrm{2xy}+\mathrm{4y}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \mathrm{dy}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 181509    Answers: 1   Comments: 0

Solve: (dy/dx)=((y^2 −3xy−5x^2 )/x^2 ) y(1)=−1 M.m

$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{3xy}−\mathrm{5x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{1}\right)=−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 175655    Answers: 1   Comments: 0

Question Number 175624    Answers: 3   Comments: 0

let p(x) = x^6 +ax^5 +bx^4 +cx^3 +dx^2 +ex+f be a polynomial function such that p(1) = 1 ; p(2) = 2 ; p(3) = 3 p(4) = 4 ; p(5) = 5 ; p(6) = 6 then find p(7) = ?

$$\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{6}} +\mathrm{ax}^{\mathrm{5}} +\mathrm{bx}^{\mathrm{4}} +\mathrm{cx}^{\mathrm{3}} +\mathrm{dx}^{\mathrm{2}} +\mathrm{ex}+\mathrm{f} \\ $$$$\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function}\:\mathrm{such} \\ $$$$\:\:\mathrm{that}\:\:\mathrm{p}\left(\mathrm{1}\right)\:=\:\mathrm{1}\:;\:\mathrm{p}\left(\mathrm{2}\right)\:=\:\mathrm{2}\:;\:\:\mathrm{p}\left(\mathrm{3}\right)\:=\:\mathrm{3} \\ $$$$\:\:\mathrm{p}\left(\mathrm{4}\right)\:=\:\mathrm{4}\:;\:\mathrm{p}\left(\mathrm{5}\right)\:=\:\mathrm{5}\:;\:\mathrm{p}\left(\mathrm{6}\right)\:=\:\mathrm{6}\:\:\mathrm{then} \\ $$$$\:\:\mathrm{find}\:\:\mathrm{p}\left(\mathrm{7}\right)\:=\:? \\ $$

Question Number 175426    Answers: 0   Comments: 0

Question Number 175369    Answers: 1   Comments: 0

solve for x log_(∣sinx∣ ) (x^2 −8x+23) > (3/(log_2 ∣sinx∣ ))

$$\:\:\mathrm{solve}\:\mathrm{for}\:{x} \\ $$$$\:\:\:\mathrm{log}_{\mid\mathrm{sin}{x}\mid\:} \left({x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{23}\right)\:>\:\frac{\mathrm{3}}{\mathrm{log}_{\mathrm{2}} \mid\mathrm{sin}{x}\mid\:} \\ $$

Question Number 175335    Answers: 2   Comments: 0

solve the inequalities Q.(1) ((1+log_a ^2 x)/(1+log_a x)) > 1 , 0<a<1 Q.(2) log_x ((4x+5)/(6−5x)) < −1

$$\:\:\:\:\:\mathrm{solve}\:\mathrm{the}\:\mathrm{inequalities} \\ $$$$\:{Q}.\left(\mathrm{1}\right)\:\:\frac{\mathrm{1}+\mathrm{log}_{{a}} ^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{log}_{{a}} {x}}\:\:\:>\:\mathrm{1}\:\:\:,\:\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\:\:{Q}.\left(\mathrm{2}\right)\:\:\:\:\:\:\:\mathrm{log}_{{x}} \:\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\:\:<\:\:−\mathrm{1} \\ $$

Question Number 175213    Answers: 2   Comments: 0

Solve by Method of variation parameter (d^2 y/dx^2 )−3(dy/dx)+2y=sinx M.m

$$\mathrm{Solve}\:\mathrm{by}\:\mathrm{Method}\:\mathrm{of}\:\mathrm{variation}\:\mathrm{parameter} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }−\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sinx} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 175122    Answers: 1   Comments: 0

  Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com