Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 24
Question Number 177179 Answers: 1 Comments: 1
$$\mathrm{If}\:\mathrm{a}\:\mathrm{number}\:\mathrm{is}\:\mathrm{20\%}\:\mathrm{more}\:\mathrm{the}\:\mathrm{other},\:\mathrm{how} \\ $$$$\mathrm{much}\:\mathrm{percent}\:\mathrm{is}\:\mathrm{the}\:\mathrm{second}\:\mathrm{number} \\ $$$$\mathrm{less}\:\mathrm{than}\:\mathrm{the}\:\mathrm{first}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}! \\ $$
Question Number 177068 Answers: 1 Comments: 0
$${Let}\:{a},{b},{c}\:{be}\:{real}\:{numbers}\:{such}\:{that}: \\ $$$${a}+{b}+{c}=\mathrm{0}.\:{Prove}\:{that}: \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}+\frac{\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} }{\mathrm{27}}\leqslant\mathrm{0} \\ $$
Question Number 176610 Answers: 1 Comments: 0
Question Number 176607 Answers: 1 Comments: 0
Question Number 176440 Answers: 0 Comments: 0
Question Number 176424 Answers: 0 Comments: 0
$$\mathrm{Using}\:\mathrm{perseval}'\mathrm{s}\:\mathrm{Identity} \\ $$$$\mathrm{Evaluate}\::\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Question Number 176360 Answers: 0 Comments: 0
Question Number 176132 Answers: 0 Comments: 0
Question Number 176098 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{deviations}\:\mathrm{of}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{numbers} \\ $$$$\mathrm{from}\:\mathrm{12}\:\mathrm{are}\: \\ $$$$\:\:\:\:\:\mathrm{3},\:−\mathrm{2},\:\mathrm{1},\:\mathrm{0},\:−\mathrm{1},\:\mathrm{4},\:\mathrm{0},\:\mathrm{1}\:\mathrm{and}\:\mathrm{2}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{and}\:\mathrm{standard}\: \\ $$$$\mathrm{deviation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}. \\ $$
Question Number 176094 Answers: 0 Comments: 0
Question Number 176022 Answers: 0 Comments: 0
Question Number 176005 Answers: 0 Comments: 2
Question Number 175976 Answers: 1 Comments: 1
Question Number 175954 Answers: 0 Comments: 0
Question Number 175953 Answers: 1 Comments: 0
Question Number 175925 Answers: 1 Comments: 1
$$\mathrm{1}^{\mathrm{x}} +\mathrm{6}^{\mathrm{x}} +\mathrm{8}^{\mathrm{x}} =\mathrm{9}^{\mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{x}\:? \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Question Number 175888 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }{\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)} \\ $$
Question Number 175746 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{2}\left(\mathrm{2xy}+\mathrm{4y}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \mathrm{dy}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Question Number 181509 Answers: 1 Comments: 0
$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{3xy}−\mathrm{5x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{1}\right)=−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 175655 Answers: 1 Comments: 0
Question Number 175624 Answers: 3 Comments: 0
$$\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{6}} +\mathrm{ax}^{\mathrm{5}} +\mathrm{bx}^{\mathrm{4}} +\mathrm{cx}^{\mathrm{3}} +\mathrm{dx}^{\mathrm{2}} +\mathrm{ex}+\mathrm{f} \\ $$$$\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function}\:\mathrm{such} \\ $$$$\:\:\mathrm{that}\:\:\mathrm{p}\left(\mathrm{1}\right)\:=\:\mathrm{1}\:;\:\mathrm{p}\left(\mathrm{2}\right)\:=\:\mathrm{2}\:;\:\:\mathrm{p}\left(\mathrm{3}\right)\:=\:\mathrm{3} \\ $$$$\:\:\mathrm{p}\left(\mathrm{4}\right)\:=\:\mathrm{4}\:;\:\mathrm{p}\left(\mathrm{5}\right)\:=\:\mathrm{5}\:;\:\mathrm{p}\left(\mathrm{6}\right)\:=\:\mathrm{6}\:\:\mathrm{then} \\ $$$$\:\:\mathrm{find}\:\:\mathrm{p}\left(\mathrm{7}\right)\:=\:? \\ $$
Question Number 175426 Answers: 0 Comments: 0
Question Number 175369 Answers: 1 Comments: 0
$$\:\:\mathrm{solve}\:\mathrm{for}\:{x} \\ $$$$\:\:\:\mathrm{log}_{\mid\mathrm{sin}{x}\mid\:} \left({x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{23}\right)\:>\:\frac{\mathrm{3}}{\mathrm{log}_{\mathrm{2}} \mid\mathrm{sin}{x}\mid\:} \\ $$
Question Number 175335 Answers: 2 Comments: 0
$$\:\:\:\:\:\mathrm{solve}\:\mathrm{the}\:\mathrm{inequalities} \\ $$$$\:{Q}.\left(\mathrm{1}\right)\:\:\frac{\mathrm{1}+\mathrm{log}_{{a}} ^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{log}_{{a}} {x}}\:\:\:>\:\mathrm{1}\:\:\:,\:\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\:\:{Q}.\left(\mathrm{2}\right)\:\:\:\:\:\:\:\mathrm{log}_{{x}} \:\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\:\:<\:\:−\mathrm{1} \\ $$
Question Number 175213 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{by}\:\mathrm{Method}\:\mathrm{of}\:\mathrm{variation}\:\mathrm{parameter} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }−\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sinx} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 175122 Answers: 1 Comments: 0
Pg 19 Pg 20 Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28
Terms of Service
Privacy Policy
Contact: info@tinkutara.com