Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 24

Question Number 171005    Answers: 0   Comments: 0

The distance S metre travelled in time t seconds by an object released from rest and allow to fall freely under the force of gravity is given by s(t)=4.5t^2 . find a) the average speed of the object during the time interval from 2 to 2.5 seconds. b) the instantaneous velocity of the object after 4 seconds. Mastermind

$${The}\:{distance}\:{S}\:{metre}\:{travelled}\:{in}\:{time} \\ $$$${t}\:{seconds}\:{by}\:{an}\:{object}\:{released}\:{from} \\ $$$${rest}\:{and}\:{allow}\:{to}\:{fall}\:{freely}\:{under}\:{the} \\ $$$${force}\:{of}\:{gravity}\:{is}\:{given}\:{by}\:{s}\left({t}\right)=\mathrm{4}.\mathrm{5}{t}^{\mathrm{2}} . \\ $$$${find}\: \\ $$$$\left.{a}\right)\:{the}\:{average}\:{speed}\:{of}\:{the}\:{object} \\ $$$${during}\:{the}\:{time}\:{interval}\:{from}\:\mathrm{2}\:{to} \\ $$$$\mathrm{2}.\mathrm{5}\:{seconds}. \\ $$$$\left.{b}\right)\:{the}\:{instantaneous}\:{velocity}\:{of}\:{the} \\ $$$${object}\:{after}\:\mathrm{4}\:{seconds}. \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170997    Answers: 1   Comments: 0

Find the equation of the tangent to the curve x^2 +y^2 −4x+6y−12=0 at the point (2, 3). Mastermind

$${Find}\:{the}\:{equation}\:{of}\:{the}\:{tangent}\:{to}\:{the} \\ $$$${curve}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{6}{y}−\mathrm{12}=\mathrm{0}\:{at}\:{the} \\ $$$${point}\:\left(\mathrm{2},\:\mathrm{3}\right). \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170996    Answers: 1   Comments: 0

Find the volume of the solid obtained by rotating about x−axis of the curve y=(√x) on the interval [0, 2]. Mastermind

$${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{obtained} \\ $$$${by}\:{rotating}\:{about}\:{x}−{axis}\:{of}\:{the}\:{curve} \\ $$$${y}=\sqrt{{x}}\:{on}\:{the}\:{interval}\:\left[\mathrm{0},\:\mathrm{2}\right]. \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170995    Answers: 0   Comments: 1

Approximate sin46° by “differentials” Mastermind

$${Approximate}\:{sin}\mathrm{46}°\:{by}\:``{differentials}'' \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 170994    Answers: 1   Comments: 0

Show that the function h(x)=x^5 −2x is an odd function Mastermind

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{5}} −\mathrm{2x} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 170986    Answers: 1   Comments: 2

Question Number 170950    Answers: 0   Comments: 2

e^x =ln(x), Make x the subject of the formula moreover find the value of x

$$\mathrm{e}^{\mathrm{x}} =\mathrm{ln}\left(\mathrm{x}\right),\:\mathrm{Make}\:\mathrm{x}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{formula} \\ $$$$\mathrm{moreover}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 170948    Answers: 0   Comments: 3

A^x^x +Bx^x +C=R, Make x the subject of the formular

$$\mathrm{A}^{\mathrm{x}^{\mathrm{x}} } +\mathrm{Bx}^{\mathrm{x}} +\mathrm{C}=\mathrm{R},\:\mathrm{Make}\:\mathrm{x}\:\mathrm{the}\:\mathrm{subject} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{formular} \\ $$

Question Number 170946    Answers: 1   Comments: 0

Solve for x : 3^x =2x+2 Mastermind

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mathrm{3}^{\mathrm{x}} =\mathrm{2x}+\mathrm{2} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Question Number 170910    Answers: 0   Comments: 0

Question Number 170906    Answers: 2   Comments: 0

Question Number 170781    Answers: 2   Comments: 0

(√((2−x))) = (2−x)^2 solve for x

$$\sqrt{\left(\mathrm{2}−\mathrm{x}\right)}\:\:\:=\:\:\left(\mathrm{2}−\mathrm{x}\right)^{\mathrm{2}} \:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\:\:\:\:\:\boldsymbol{\mathrm{x}} \\ $$

Question Number 170780    Answers: 1   Comments: 0

Question Number 170743    Answers: 0   Comments: 0

2. Uma soluca^ o tampao foi preparada misturarando 200ml NH_(3 ) 0,6 moles e 300ml de uma solucao de NH_3 Cl 0,2 moles P^(kh) =9,24 e log 2=0,3 a) Qual e o P^h desta solucao tampa^ o supondo-se um volume de 500ml? b)Qual sera o P^h depois de ser adicionado 0,2 molar de ion [H^− ] Dados n(CH_3 -CH_2 COOH)=0,02mok/l=0,02M Ka=1,3∙10^(−5) n(CH_3 −CH_2 -COONa)=0,015mol/l=0,015M V=1l log 2=0,3 log 0,11 P^h =? 1°Passo 2°Passo P^(ka) =−log Ka P^h =P^(ka) +log(([Base])/([Acido])) P^(ka) =−log 1,3∙10^(−5) ? P^h =4,89+log(([0,02])/([0,015])) P^(ka) =(−5+0,11) P^h =4,89+log1,3 P^(ka) =5−11 P^h =4,89+0,11 P^(ka) =4,49 P^h =5 3°Passo P^h =P^h +log(([Basica])/([Acida])) P^h =4,89+log(([0,02])/([0,025])) P^h =4,89+log0,8 P^h =4,89+0,096 P^h =4,986≈5

$$ \\ $$$$\mathrm{2}.\:\mathrm{Uma}\:\:\mathrm{soluc}\overset{ } {\mathrm{a}o}\:\:\mathrm{tampao}\:\mathrm{foi}\:\mathrm{preparada}\:\mathrm{misturarando}\:\mathrm{200}\boldsymbol{\mathrm{m}{l}}\:\mathrm{NH}_{\mathrm{3}\:} \:\:\mathrm{0},\mathrm{6}\:{moles} \\ $$$${e}\:\mathrm{300}{m}\boldsymbol{{l}}\:{de}\:{uma}\:{solucao}\:{de}\:\mathrm{NH}_{\mathrm{3}} \mathrm{C}{l}\:\:\:\mathrm{0},\mathrm{2}\:{moles}\:{P}^{\mathrm{kh}} =\mathrm{9},\mathrm{24}\:{e}\:\mathrm{log}\:\mathrm{2}=\mathrm{0},\mathrm{3} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Q}{ual}\:{e}\:{o}\:{P}^{\mathrm{h}} \:\mathrm{desta}\:\mathrm{solucao}\:\mathrm{tamp}\overset{ } {\mathrm{a}o}\:\mathrm{supondo}-{se}\:{um}\:{volume}\:{de}\:\mathrm{500}\boldsymbol{{ml}}? \\ $$$$\left.\mathrm{b}\right)\mathrm{Q}{ual}\:{sera}\:{o}\:{P}^{\mathrm{h}} \:{depois}\:{de}\:{ser}\:{adicionado}\:\mathrm{0},\mathrm{2}\:{molar}\:{de}\:{ion}\:\left[\mathrm{H}^{−} \right] \\ $$$$\mathrm{Dados} \\ $$$$\mathrm{n}\left(\mathrm{CH}_{\mathrm{3}} -\mathrm{CH}_{\mathrm{2}} \mathrm{COOH}\right)=\mathrm{0},\mathrm{02}\boldsymbol{{mok}}/\boldsymbol{{l}}=\mathrm{0},\mathrm{02M} \\ $$$${K}\mathrm{a}=\mathrm{1},\mathrm{3}\centerdot\mathrm{10}^{−\mathrm{5}} \\ $$$${n}\left(\mathrm{CH}_{\mathrm{3}} −\mathrm{CH}_{\mathrm{2}} -\mathrm{COONa}\right)=\mathrm{0},\mathrm{015}{mol}/\boldsymbol{{l}}=\mathrm{0},\mathrm{015M} \\ $$$$\mathrm{V}=\mathrm{1}\boldsymbol{{l}} \\ $$$$\mathrm{log}\:\mathrm{2}=\mathrm{0},\mathrm{3} \\ $$$$\mathrm{log}\:\mathrm{0},\mathrm{11} \\ $$$$\mathrm{P}^{\mathrm{h}} =? \\ $$$$\:\:\mathrm{1}°\boldsymbol{\mathrm{Passo}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}°\mathrm{Passo} \\ $$$$\mathrm{P}^{\mathrm{ka}} =−\mathrm{log}\:\mathrm{Ka}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{P}^{\mathrm{h}} =\mathrm{P}^{\mathrm{ka}} +\mathrm{log}\frac{\left[\mathrm{Base}\right]}{\left[\mathrm{Acido}\right]} \\ $$$$\mathrm{P}^{\mathrm{ka}} =−\mathrm{log}\:\mathrm{1},\mathrm{3}\centerdot\mathrm{10}^{−\mathrm{5}} \:\:\:\:\:?\:\:\:\:\:\:\:\:\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{89}+\mathrm{log}\frac{\left[\mathrm{0},\mathrm{02}\right]}{\left[\mathrm{0},\mathrm{015}\right]} \\ $$$$\mathrm{P}^{\mathrm{ka}} =\left(−\mathrm{5}+\mathrm{0},\mathrm{11}\right)\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{89}+\mathrm{log1},\mathrm{3} \\ $$$$\mathrm{P}^{\mathrm{ka}} =\mathrm{5}−\mathrm{11}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{89}+\mathrm{0},\mathrm{11} \\ $$$$\mathrm{P}^{\mathrm{ka}} =\mathrm{4},\mathrm{49}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{P}^{\mathrm{h}} =\mathrm{5} \\ $$$$\mathrm{3}°\boldsymbol{\mathrm{Passo}} \\ $$$$\mathrm{P}^{\mathrm{h}} =\mathrm{P}^{\mathrm{h}} +\mathrm{log}\frac{\left[\mathrm{Basica}\right]}{\left[\mathrm{Acida}\right]} \\ $$$$\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{89}+\mathrm{log}\frac{\left[\mathrm{0},\mathrm{02}\right]}{\left[\mathrm{0},\mathrm{025}\right]} \\ $$$$\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{89}+\mathrm{log0},\mathrm{8} \\ $$$$\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{89}+\mathrm{0},\mathrm{096} \\ $$$$\mathrm{P}^{\mathrm{h}} =\mathrm{4},\mathrm{986}\approx\mathrm{5} \\ $$

Question Number 170673    Answers: 0   Comments: 2

Question Number 170659    Answers: 0   Comments: 0

c≥0 (U_n )_(n≥1) U_1 =1 U_(n+1) =(√(U_n +cn)) show that U_n ≤α(√n) determine α

$${c}\geqslant\mathrm{0}\:\left({U}_{{n}} \right)_{{n}\geqslant\mathrm{1}} \:\:\:{U}_{\mathrm{1}} =\mathrm{1} \\ $$$${U}_{{n}+\mathrm{1}} =\sqrt{{U}_{{n}} +{cn}} \\ $$$${show}\:{that}\:{U}_{{n}} \leqslant\alpha\sqrt{{n}} \\ $$$${determine}\:\alpha \\ $$

Question Number 170650    Answers: 1   Comments: 0

Tom bought a computer for 15% off from the list price of P dollars. If the sales tax was 8%, how much did he pay for the computer including sales tax?

$$ \\ $$Tom bought a computer for 15% off from the list price of P dollars. If the sales tax was 8%, how much did he pay for the computer including sales tax?

Question Number 170576    Answers: 0   Comments: 2

Question Number 170494    Answers: 0   Comments: 0

Question Number 170495    Answers: 1   Comments: 0

Question Number 170492    Answers: 0   Comments: 0

Question Number 170485    Answers: 2   Comments: 0

Question Number 170480    Answers: 0   Comments: 3

Question Number 170479    Answers: 0   Comments: 0

Question Number 170443    Answers: 0   Comments: 0

A body of weight 6 newtons is plased on a rough horizontal plane whose coefficient of friction is ((√3)/3) the friction force ε=

$${A}\:{body}\:{of}\:{weight}\:\mathrm{6}\:{newtons}\:{is}\:{plased}\:{on}\:{a}\:{rough}\:{horizontal}\:{plane}\:{whose}\:{coefficient}\:{of}\:{friction}\:{is}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:{the}\:{friction}\:{force}\:\epsilon= \\ $$

Question Number 170416    Answers: 2   Comments: 0

∫(√(4−x^2 ))dx Mastermind

$$\int\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$$${Mastermind} \\ $$

  Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com