Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 20

Question Number 180543    Answers: 1   Comments: 0

12.589 we read non−decimal 12 but decimal number 5,8,9 separate read. why?

$$\mathrm{12}.\mathrm{589} \\ $$$$\mathrm{we}\:\mathrm{read}\:\mathrm{non}−\mathrm{decimal}\:\mathrm{12}\:\mathrm{but}\:\mathrm{decimal} \\ $$$$\mathrm{number}\:\mathrm{5},\mathrm{8},\mathrm{9}\:\mathrm{separate}\:\mathrm{read}.\:\mathrm{why}? \\ $$

Question Number 180449    Answers: 0   Comments: 1

x + y + z = 0 2x + 4y − z = 0 3x + 2y + 2z = 0 Solve for x,y,and z

$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:+\:\mathrm{4y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{3x}\:+\:\mathrm{2y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x},\mathrm{y},\mathrm{and}\:\mathrm{z} \\ $$

Question Number 180447    Answers: 0   Comments: 1

x + y − z = 0 2x − 3y + z = 0 x −4y + 2z = 0 find the value of x,y, and z

$$\mathrm{x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:−\:\mathrm{3y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:−\mathrm{4y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\:\mathrm{and}\:\mathrm{z} \\ $$

Question Number 180446    Answers: 2   Comments: 0

Solve : x_1 + 2x_2 − 3x_3 = 0 2x_1 + 4x_2 − 2x_3 = 2 3x_1 + 6x_2 − 4x_3 = 3

$$\mathrm{Solve}\::\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{2x}_{\mathrm{2}} \:−\:\mathrm{3x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{1}} \:+\:\mathrm{4x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{2} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:+\:\mathrm{6x}_{\mathrm{2}} \:−\:\mathrm{4x}_{\mathrm{3}} \:=\:\mathrm{3} \\ $$

Question Number 180438    Answers: 3   Comments: 0

lim_(x→0) (((√(4+x))−(√(4−x)))/x) find the limit above

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\sqrt{\mathrm{4}+\mathrm{x}}−\sqrt{\mathrm{4}−\mathrm{x}}}{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180414    Answers: 1   Comments: 0

lim_(x→3) (((3^x −x^3 )/(x^x −3^3 ))) find the limit above

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{3}} {\mathrm{m}}\left(\frac{\mathrm{3}^{\mathrm{x}} −\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{x}} −\mathrm{3}^{\mathrm{3}} }\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180413    Answers: 2   Comments: 0

lim_(h→0) (((e^h −1)/h)) find the limit above

$$\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\left(\frac{\mathrm{e}^{\mathrm{h}} −\mathrm{1}}{\mathrm{h}}\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$

Question Number 180301    Answers: 3   Comments: 1

Question Number 180295    Answers: 0   Comments: 2

Express these both Cartesian and polar form (1) f(z)=3z^2 −2z+(1/z) (2) f(z)=z+(1/z) Thanks

$$\mathrm{Express}\:\mathrm{these}\:\mathrm{both}\:\mathrm{Cartesian}\:\mathrm{and}\: \\ $$$$\mathrm{polar}\:\mathrm{form} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{3z}^{\mathrm{2}} −\mathrm{2z}+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$

Question Number 180285    Answers: 0   Comments: 3

Express this f(z)=((2z+i)/(z+i)) in polar form where z=re^(iθ) (polar form)

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{2z}+\mathrm{i}}{\mathrm{z}+\mathrm{i}}\:\mathrm{in}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{where}\:\mathrm{z}=\mathrm{re}^{\mathrm{i}\theta} \:\left(\mathrm{polar}\:\mathrm{form}\right) \\ $$$$ \\ $$

Question Number 180277    Answers: 0   Comments: 4

Express the function f(z)=ze^(iz) into cartesian form and separate it into Real and Imaginary part. M.m

$$\mathrm{Express}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\mathrm{iz}} \:\mathrm{into} \\ $$$$\mathrm{cartesian}\:\mathrm{form}\:\mathrm{and}\:\mathrm{separate}\:\mathrm{it}\:\mathrm{into} \\ $$$$\mathrm{Real}\:\mathrm{and}\:\mathrm{Imaginary}\:\mathrm{part}. \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 180260    Answers: 1   Comments: 0

x^(logx) =100x what is the value of x?

$$\mathrm{x}^{\mathrm{logx}} =\mathrm{100x} \\ $$$$ \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}? \\ $$

Question Number 180159    Answers: 1   Comments: 0

Express the function f(z)=ze^(iz) in polar form and separate it into Real and Imaginary part. M.m

$$\mathrm{Express}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\mathrm{iz}} \:\mathrm{in}\:\mathrm{polar} \\ $$$$\mathrm{form}\:\mathrm{and}\:\mathrm{separate}\:\mathrm{it}\:\mathrm{into}\:\mathrm{Real}\:\mathrm{and}\: \\ $$$$\mathrm{Imaginary}\:\mathrm{part}. \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 180157    Answers: 2   Comments: 0

As the force on a string increases from 100N to 180N, the string extends by 10cm. The work done in increasing the tension in the string is?

As the force on a string increases from 100N to 180N, the string extends by 10cm. The work done in increasing the tension in the string is?

Question Number 180145    Answers: 1   Comments: 0

determine 1)L^− [((4s^2 −17s−24)/(s(s+3)(s−4)))] 2)L^− [((5s^2 −4s−7)/((s−3)(s^2 +4)))]

$${determine} \\ $$$$\left.\mathrm{1}\right)\mathcal{L}^{−} \left[\frac{\mathrm{4}{s}^{\mathrm{2}} −\mathrm{17}{s}−\mathrm{24}}{{s}\left({s}+\mathrm{3}\right)\left({s}−\mathrm{4}\right)}\right] \\ $$$$\left.\mathrm{2}\right)\mathcal{L}^{−} \left[\frac{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{4}{s}−\mathrm{7}}{\left({s}−\mathrm{3}\right)\left({s}^{\mathrm{2}} +\mathrm{4}\right)}\right] \\ $$

Question Number 180103    Answers: 0   Comments: 4

Solve 2x^2 =8

$${Solve}\:\mathrm{2}{x}^{\mathrm{2}} =\mathrm{8} \\ $$

Question Number 180101    Answers: 1   Comments: 2

Hello mr. Tinku Tara Please, in the comments part, putting the name of the member whom the comment is for him Commentd by Acem on Mr. w as an example Thank you!

$${Hello}\:{mr}.\:{Tinku}\:{Tara} \\ $$$$ \\ $$$${Please},\:{in}\:{the}\:{comments}\:{part},\:{putting}\:{the}\:{name} \\ $$$$\:{of}\:{the}\:{member}\:{whom}\:{the}\:{comment}\:{is}\:{for}\:{him} \\ $$$$ \\ $$$${Commentd}\:{by}\:{Acem}\:{on}\:{Mr}.\:{w}\:\:{as}\:{an}\:{example} \\ $$$$ \\ $$$${Thank}\:{you}! \\ $$

Question Number 179972    Answers: 0   Comments: 5

Question Number 179961    Answers: 1   Comments: 0

f(x)∈[0,1],1≤f(x)≤3 how to prove 1≤∫_0 ^1 f(x)dx ∫_0 ^1 (dx/(f(x)))≤(4/3)?

$${f}\left({x}\right)\in\left[\mathrm{0},\mathrm{1}\right],\mathrm{1}\leqslant{f}\left({x}\right)\leqslant\mathrm{3} \\ $$$${how}\:{to}\:{prove}\:\mathrm{1}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{{f}\left({x}\right)}\leqslant\frac{\mathrm{4}}{\mathrm{3}}? \\ $$

Question Number 179916    Answers: 0   Comments: 0

Question Number 179908    Answers: 0   Comments: 2

Some Important notes 1st Someone has solved a question as wrong, and after he see other people have solved it correctly he delete his poste! hmmm by the way, i have some lapses, i′ve never deleted any. My mistakes keep you from making like them. There is no embarrassment, so please, leave things as they are. 2nd I once composed an question, some people had solved it perfectly, and someone write as comment: “You seem don′t know anything about math” I′ve never replied him, because am not interest in introducing my acadimic qualifications to him. But here i would like to do and say that i exchange the qusetions with others, so if you were a student then try to learn, and if you were a professuer so you can note my questions in your book to show them later to your students in real. The bottom line is let′s exchange a variety of questions! 3rd I noticed some people answer qusetions as a comment! Good! now he seems as the 1st one who solved true! Claps! Can you friend respect who had solved before you? Theses were my three points, for this day. Hope you interest in too, and thanks for you all

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Some}}\:\boldsymbol{{Important}}\:\boldsymbol{{notes}} \\ $$$$\:\mathrm{1}\boldsymbol{{st}}\:{Someone}\:{has}\:{solved}\:{a}\:{question}\:{as}\:{wrong}, \\ $$$$\:{and}\:{after}\:{he}\:{see}\:{other}\:{people}\:{have}\:{solved}\:{it} \\ $$$$\:{correctly}\:{he}\:{delete}\:{his}\:{poste}!\:{hmmm}\:{by}\:{the}\:{way}, \\ $$$$\:{i}\:{have}\:{some}\:{lapses},\:{i}'{ve}\:{never}\:{deleted}\:{any}. \\ $$$$\:{My}\:{mistakes}\:{keep}\:{you}\:{from}\:{making}\:{like}\:{them}. \\ $$$$\:{There}\:{is}\:{no}\:{embarrassment},\:{so}\:{please},\:{leave} \\ $$$$\:{things}\:{as}\:{they}\:{are}. \\ $$$$ \\ $$$$\mathrm{2}\boldsymbol{{nd}}\:{I}\:{once}\:{composed}\:{an}\:{question},\:{some}\:{people} \\ $$$$\:{had}\:{solved}\:{it}\:{perfectly},\:{and}\:{someone}\:{write}\:{as} \\ $$$$\:{comment}: \\ $$$$\:``{You}\:{seem}\:{don}'{t}\:{know}\:{anything}\:{about}\:{math}'' \\ $$$$\:{I}'{ve}\:{never}\:{replied}\:{him},\:{because}\:{am}\:{not}\:{interest} \\ $$$$\:{in}\:{introducing}\:{my}\:{acadimic}\:{qualifications}\:{to}\:{him}. \\ $$$$\:{But}\:{here}\:{i}\:{would}\:{like}\:{to}\:{do}\:{and}\:{say}\:{that} \\ $$$$\:{i}\:{exchange}\:{the}\:{qusetions}\:{with}\:{others},\:{so}\:{if}\:{you} \\ $$$$\:{were}\:{a}\:{student}\:{then}\:{try}\:{to}\:{learn}, \\ $$$$\:{and}\:{if}\:{you}\:{were}\:{a}\:{professuer}\:{so}\:{you}\:{can}\:{note} \\ $$$$\:{my}\:{questions}\:{in}\:{your}\:{book}\:{to}\:{show}\:{them}\:{later} \\ $$$$\:{to}\:{your}\:{students}\:{in}\:{real}. \\ $$$$\:\boldsymbol{{The}}\:\boldsymbol{{bottom}}\:\boldsymbol{{line}}\:{is}\:{let}'{s}\:{exchange} \\ $$$$\:\:\:{a}\:{variety}\:{of}\:{questions}! \\ $$$$ \\ $$$$\mathrm{3}{rd}\:{I}\:{noticed}\:{some}\:{people}\:{answer}\:{qusetions} \\ $$$$\:{as}\:{a}\:{comment}!\:{Good}!\:{now}\:{he}\:{seems} \\ $$$$\:{as}\:{the}\:\mathrm{1}{st}\:{one}\:{who}\:{solved}\:{true}!\:\boldsymbol{{Claps}}! \\ $$$$ \\ $$$$\:{Can}\:{you}\:{friend}\:{respect}\:{who}\:{had}\:{solved}\:{before}\:{you}? \\ $$$$ \\ $$$$\:{Theses}\:{were}\:{my}\:{three}\:{points},\:{for}\:{this}\:{day}. \\ $$$$ \\ $$$$\:{Hope}\:{you}\:{interest}\:{in}\:{too},\:{and}\:{thanks}\:{for}\:{you}\:{all} \\ $$$$ \\ $$

Question Number 179886    Answers: 0   Comments: 5

Question Number 179369    Answers: 1   Comments: 0

Question Number 179094    Answers: 0   Comments: 1

determine 1)L^− [((s^3 +3)/(s(s^2 +9)))] 2)L^− [(4/((s^2 +2s+5)^2 ))] L^− is the inverse laplace transform

$${determine} \\ $$$$\left.\mathrm{1}\right)\mathcal{L}^{−} \left[\frac{{s}^{\mathrm{3}} +\mathrm{3}}{{s}\left({s}^{\mathrm{2}} +\mathrm{9}\right)}\right] \\ $$$$\left.\mathrm{2}\right)\mathcal{L}^{−} \left[\frac{\mathrm{4}}{\left({s}^{\mathrm{2}} +\mathrm{2}{s}+\mathrm{5}\right)^{\mathrm{2}} }\right] \\ $$$$\mathcal{L}^{−} \:{is}\:{the}\:{inverse}\:{laplace}\:{transform} \\ $$

Question Number 179093    Answers: 0   Comments: 0

find the laplace transform of f(t)= t^2 cos(2t) u(t) u(t) is unit step function u(t)= { ((1 t≥0)),((0 t<0)) :}

$$\:{find}\:{the}\:{laplace}\:{transform}\:{of} \\ $$$${f}\left({t}\right)=\:{t}^{\mathrm{2}} \:{cos}\left(\mathrm{2}{t}\right)\:{u}\left({t}\right) \\ $$$${u}\left({t}\right)\:{is}\:{unit}\:{step}\:{function}\: \\ $$$${u}\left({t}\right)=\begin{cases}{\mathrm{1}\:\:\:\:\:\:\:{t}\geqslant\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:{t}<\mathrm{0}}\end{cases} \\ $$$$ \\ $$

Question Number 178877    Answers: 1   Comments: 0

Two forces F1 and F2 of magnitude 3 and 4 Newtons are inclined at angles 150° and 60° to the positive x-axis respectively . Find the resultant force?

Two forces F1 and F2 of magnitude 3 and 4 Newtons are inclined at angles 150° and 60° to the positive x-axis respectively . Find the resultant force?

  Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com